0

无线传感器网络的典型应用(精选十篇)

浏览

1911

文章

10

篇1:基于ZigBee的无线传感器网络硬件设计

全文共 2267 字

+ 加入清单

引言

无线传感器网络作为一种新兴技术,已经成为国内外研究的热点,其在军事、环境、健康、家庭、商业、空间探索和救灾等领域展现出广阔的应用前景[1]。国内外很多单位都开展了相关领域的研究,但大部分工作仍处在无线网络协议性能仿真和硬件节点小规模实验设计阶段。无线传感器网络并不需要较高的传输带宽,但却要求极低的功率消耗,以使无线传感器网络中的设备可工作更长的时间,同时低成本也是无线传感器普及应用的一大要求。ZigBee/IEEE 802.15.4标准把低功耗、低成本作为主要目标,为无线传感器网络提供了互连互通的平台,目前基于该技术的无线传感器网络的研究和开发得到越来越多的关注。本文就是基于ZigBee技术,设计了通用无线传感器网络硬件平台,以期待能够产业化,为我国的无线传感器事业做出更大的贡献。

基于ZigBee的无线传感网络的主要优势

ZigBee一词源自蜜蜂群在发现花粉位置时,通过跳Z字形舞蹈来告知同伴,达到交换信息的目的。可以说是一种小动物通过简捷的方式实现“无线”的沟通,人们借此称呼一种专注于低功耗、低成本、低复杂度、低速率的近程无线网络通信技术,亦包含寓意。ZigBee技术并不是完全独有、全新的标准。它的物理层、MAC层和链路层采用了IEEE 802.15.4标准,但在此基础上进行了完善和扩展。其网络层、应用会聚层和高层应用规范由ZigBee联盟进行了制定。ZigBee的特点突出,尤其在低功耗、低成本上,主要有以下几个方面[2]。

① 低功耗。在低耗电待机模式下,2节5号干电池可支持1个节点工作6~24个月,甚至更长。这是ZigBee的突出优势。相比较,蓝牙只能工作数周、WiFi只可工作数小时。

② 低成本。通过大幅简化协议(不到蓝牙的1/10),降低了对通信控制器的要求,按预测分析,以8051的8位微控制器测算,全功能的主节点需要32 KB代码,子功能节点少至4 KB代码,而且ZigBee免协议专利费。

③ 低速率。ZigBee工作在20~250 kbps的较低速率,分别提供250 kbps(2.4 GHz)、40 kbps(915 MHz)和20 kbps(868 MHz)的原始数据吞吐率,满足低速率传输数据的应用需求。

④ 近距离。传输范围一般介于10~100 m之间,在增加RF发射功率后,亦可增加到1~3 km。这指的是相邻节点间的距离。如果通过路由和节点间通信的接力,传输距离将可以更远。

⑤ 短时延。ZigBee的响应速度较快,一般从睡眠转入工作状态只需15 ms,节点连接进入网络只需30 ms,进一步节省了电能。相比较,蓝牙需要3~10 s、WiFi需要3 s。

⑥ 高容量。ZigBee可采用星状、片状和网状网络结构,由一个主节点管理若干子节点,最多一个主节点可管理254个子节点;同时主节点还可由上一层网络节点管理,最多可组成65 000个节点的大网。

⑦ 协议简单、安全性高。ZigBee协议栈长度平均只有蓝牙的1/4,这种简化对低成本、可交互性和可维护性非常重要。ZigBee技术提供了数据完整性检查和鉴权功能,提供了三级安全模式,可灵活确定其安全属性,网络安全能够得到有效的保障。

⑧ 免执照频段。采用直接序列扩频在工业科学医疗(ISM)频段—2.4 GHz(全球)、915 MHz(美国)和868 MHz(欧洲)。

由上述ZigBee的主要技术特点,可以看出:基于IEEE802.15.4标准,可在数千个微小的传感器之间实现相互协调通信。另外,采用接力的方式通过无线电波将数据从一个传感器传到另一个传感器,可使得通信效率非常高。与现有的各种无线通信技术相比,ZigBee技术的低功耗、低速率最适合应用于无线传感器网络。

无线传感器网络硬件设计

在无线传感器网络中,节点任意散落在被监测区域内。节点以自组织形式构成网络,通过多跳中继方式将监测数据传到Sink节点,最终借助长距离或临时建立的Sink链路将整个区域内的数据传送到远程中心进行集中处理。图1给出了一般形式的无线传感器网络体系结构[3]。

针对环境及结构状态监测,我们设计了一种通用无线传感器网络硬件平台,该硬件平台由若干传感器节点、具有无线接收功能的Sink节点及一台计算机构成。无线传感器节点分布于需要监测的区域内,执行数据采集、处理和无线通信等工作,Sink节点接收各传感器的数据并以有线的方式将数据传送给计算机,如图2所示。

无线传感器节点的硬件设计

无线传感器节点一般由传感器模块、数据处理模块、数据传输模块和电源管理模块四部分组成。其中,传感器模块负责采集监视区域的信息并完成数据转换,采集的信息可以包含温度、湿度、光强度、加速度和大气压力等;数据处理 模块负责控制整个节点的处理操作、路由协议、同步定位、功耗管理以及任务管理等;数据传输模块负责与其他节点或Sink节点进行无线通信,交换控制消息和收发采集数据;电源管理模块选通所用到的传感器,节点电源采用微型纽扣电池,以减小节点的体积。

我们设计的节点实现机理是以ZigBee传输模块代替传统的串行通信模块,将采集到的信息数据以无线方式发送出去。该节点包含ZigBee无线传输模块、微控制器模块、传感器模块及接口电路、直流电源模块以及外部存储器等。为了降低传感器节点的成本,减小传感器节点的体积,我们采用Chipcon公司推出的高度整合的SoC芯片CC2430实现传感器节点的数据传输和处理功能。图3是设计的无线传感器节点的结构框图。下面将分别介绍无线传感器节点中的几个主要功能模块。

展开阅读全文

篇2:室外WLAN无线网络技术的应用解析

全文共 1170 字

+ 加入清单

众所周知,室外部署WLAN无线网络技术与有线网络相比,有很多优势:直接采用电缆会受到物理条件的限制,且安装成本较高,通常需要当地政府批准,在部署完成以后,改动不够灵活。若采用电话线连接,每月服务费用高,而且安装成本和设备成本都很高。

此外,设立WLAN无线网络技术需要考虑很多因素:需要连接的建筑物必须要能保持明确的视线,因此,像高大的树木和建筑物等障碍物都会直接影响无线电波的传输。在减少带宽的情况下,可以增加建筑物之间的传输距离,进行远距离传输。

目前,无线传输的距离在无障碍的情况下最长可以达到80公里,但是在应用中,实际距离可能会远小于80公里,因此在多山地区,或者有障碍物的时候,距离不宜过长,实在需要的话,可以在中间设立中继中转站,绕过障碍。

WLAN无线网络技术近距离传输时,为了获得最大的带宽,可以将无线网桥连接到支持冗余通道的路由器上,这样就可将三个无线网桥集成在一起,并且天线高度基本没有影响。由于WLAN无线网络技术连网设备大都要求“视距”传输,因此天线高度的设定很重要。

如果天线的高度不够,靠增加功率放大或增大天线增益的方法得到的效果将非常有限。在无线覆盖区域内,规划并选择一个不会与其他无线通信干扰的信道。如果通过WLAN无线网络技术跨路连接建筑物时,天线可以安装在屋顶上,利用小型天线保持电波的集中,并避免来自其他企业的干扰。

尽管无线网络利用了跳频技术,使得频率载波很难被检测到,但是,为了预防万一,还可以在接入点设置网络ID号,这样只有当双方无线设置了同样的ID号,才能和接入点同步并接到网络中。此外,在传输的数据中进行加密是提高安全性的进一步手段。

目前,随着室外WLAN无线网络技术优势的日益明显,市面上的室外WLAN设备也已经成为市场中的发展重点:

其中,Firetide宣布,它们即将推出一款全新的室外无线以太网桥FWB-100。 据悉,这款FWB-100可以支持2.4、5和4.9 GHz频段,同时可以在1-2英里的区域内实现35 Mbps的吞吐量。预计在美国的上市价格在1000-1500美元之间。

与此同时,摩托罗拉也推出了一款802.11n室外网状广域网解决方案。该接入点拥有高达300 Mbps的数据传输速度,并具备摩托罗拉享有专利的ADvanced Element Panel Technology(ADEPT)天线系统。AP 7181接入点能为市政和企业客户提供灵活的无线网络解决方案,以满足他们现时和未来对数据、视频和语音的应用需求。

此外,4ipnet也已经推出了两款可支持802.11a/n 5GHz的室外接入点,其无线数据传输率高达300Mbps,型号为OWL400/410。其中,OWL400配备了两个标准的N型连接器,可以现场进行天线的更换。而OWL410则内置了14 DBI的双极化天线。

展开阅读全文

篇3:NB/笔记本无线网络应用集锦

全文共 1212 字

+ 加入清单

nb/笔记本无线网络应用集锦

为了因应热度不减的无线网络,目前不少厂商推出各式各样的无线网络产品,符合不同使用者的需求。从出外在外用的随身AP,到可无线讲电话的Wi-Fi话机,甚至是可以实时看股票的双网手机,由此可见无线网络已经是成为网络设备的热门应用。 Wi-Fi话机与双网手机方便使用者“无限畅谈” 在无线网络都市当中,Wi-Fi话机将是一般使用者入门用的VoIP设备,因为只要手上有一支Wi-Fi话机,搭配上无线网络,就可以随时随地跟朋友通过VoIP聊天,而且只要付无线网络联机费用。由于双网手机内建Wi-Fi功能,通过加装VoIP软件,一样也可以让您跟朋友通过VoIP对谈,可说是相当地方便。 内建无线网络的PDA与双网手机,在搭配ISP厂商资料提供与应用程序的情况下,使用者就可以在无线网络讯号可及的地方,直接线上读取实时资料,如股票与实时新闻,甚至通过加密机制,可以让使用者实时线上下单,不用打电话到号子里。 无线网络设备不断推陈出新 由于无线网络已经成为网络应用的一部份,因此不少网络设备商推出各式各样的无线网络设备,比如户外用可防水防雷击的无线网络基地台,可两频三模同时收发的企业用AP,甚至可长距离点对点联机的无线网络装置,在市场上都相当地热门。 除了公众空间与企业会使用无线网络之外,热门的数码家庭应用也要用到无线网络,包括数码媒体转接器(Digital Media Adapter)、无线网络监视器,甚至包括家庭数位码影音服务器也都要内建无线网络功能,所以无线网络可说是无所不在。如果无线网络布建密集度够高的话,就可以通过无线网络进行各式各样的应用,尤其是包括政府服务、网络信息与实时消息等,都是无线网络可以提供的加值功能。 无线网络全面迈向G+速度 由于既有的802.11g资料传输速度只有54Mbps,因此不少厂商纷纷推出号称资料连结速度可超越54Mbps的G+联机速度。最早推出的是Atheros的SuperG,号称连结速度可达108Mbps,再来就是Broadcom的Afterburner技术,号称连结速度为125Mbps,而TI所推出的802.11g无线网络芯片,也可以有125Mbps的连结速度。至于宣称连结速度最快的,则是GlobespanVirata所推出的Nitro XM无线网络芯片,号称可达140Mbps。 就表面数字看起来,G+的连接速度大多是802.11g的54Mbps传输率的两倍以上,但是由于各家都是使用自己的专属协议,因此不同芯片厂商彼此之间只能够用802.11g的速度来连结。除此之外,由于产品上面所标示的是连结速度,而非实际资料传输率,因此当使用者作实际资料传输速度测试的时候,会发现大概比既有的802.1g的资料传输率再高个1成到3成5左右,并没有办法达到如规格上面所标示的两倍以上传输速度,所以对于已经有802.11g的无线网络产品的使用者而言,并不需要急着换。

展开阅读全文

篇4:无线传感器网络及应用综述

全文共 2096 字

+ 加入清单

微电子技术、计算机技术、无线通信和传感器技术的飞速发展和日益成熟,推动了低成本、低功耗无线传感器网络WSN(Wireless Sensor Network)的发展。无线传感器网络研究具有很广泛的应用前景:军事侦察、环境科学、医疗卫生、工业自动化、商业应用等。传感器网络的研究是很有必要的。这里主要介绍无线传感器网络的概念、结构、特点,及在一些领域的应用情况,并对无线传感器网络未来的发展情况进行了展望。

1 无线传感器网络

无线传感器网络是一组传感器以Ad hoc方式组成的有线或者无线网络,其目的是协作地感知、收集和处理传感器网络所覆盖地理区域中感知对象的信息,并传递给观察者。这种传感器网络集中了传感器技术、嵌入式计算机技术和无线通信技术,能协作地感知、监测和收集各种环境下所感知对象的信息,通过对这些信息的协作式信息处理,获得感知对象的准确信息,然后通过Ad hoc方式传送给需要这些信息的用户。

2 WSN的主要特点

作为一种新型网络,相比传统的无线网络,无线传感器网络具有如下特点:

1)大面积的空间分布 比如在军事应用方面,可以将无线传感器网络部署在战场上跟踪敌人的军事行动,智能化的终端可以被大量装在宣传品、子弹或炮弹壳中,在目标地点撤落下去,形成大面积的监视网络。

2)能源受限制 网络中每个节点的电源是有限的,网络大多工作在无人区或者对人体有伤害的恶劣环境中,几乎不可能更换电源,这要求网络功耗小,以延长网络的寿命。而且要尽最可能节省电源消耗。

3)网络自动配置,自动识别节点 包括自动组网、对入网的终端进行身份验证泐止非法用户入侵。相对于那些布置在预先指定地点的传感器网络而言,无线传感器网络可以借鉴Ad hoc方式来配置,当然前提是要有一套合适的通信协议保证网络在无人干预的情况下自动运行。

4)网络的自动管理和高度协作性 在无线传感器网络中,数据处理由节点自身完成,以数据为中心的特性是无线传感器网络的又一特点。每个节点仅知道自己邻近节点的位置和标识,传感器网络通过相邻节点之间的相互协作来进行信号处理和通信,具有很强的协作性。

5)传感器网络的拓扑结构变化快 传感器网络自身的特点使得传感器网络的拓扑结构变化很快,这对网络各种算法的有效性提出了挑战。此外,如果节点具备移动能力,也有可能带来网络的拓扑变化。

3 WSN节点的结构

传感器节点一般由传感、数据处理、无线通信和供电等4个模块组成,如图l所示。

传感模块包括传感器和模数转换模块,负责检测区域内信息的采集和数据转换;数据处理模块由嵌入式系统构成,包括CPU、存储器、嵌入式操作系统等,负责控制整个传感器节点的操作,存储和处理本身采集的数据以及其他节点发来的数据:无线通信模块由网络、MAC、收发器等组成,负责与其他传感器节点进行无线通信、交换控制信息和收发采集数据:供电模块为传感器节点提供运行所需的能量,通常采用微型电池。

4 WSN的应用领域

1)军事应用 WSN具有可快速部署、可自组织、隐蔽性强和高容错性的特点,因此非常适合在军事上应用。利用WSN能够实现对敌军兵力和装备的监控、战场的实时监视、目标定位、战场评估、核攻击和生物化学攻击的监测和搜索等功能。通过飞机或炮弹直接将传感器节点播撒到敌方阵地,就能够非常隐蔽且准确地收集战场信息。

2)农业及环境应用 无线传感器网络的农业及环境应用包括:对影响农作物的环境条件的监控(精细农业监控),对鸟类、昆虫等小动物运动进行追踪,海洋、土壤、大气成分的探测,森林防火监测,污染监控。降雨量监测,河水水位监测,洪水监测等。

3)医疗护理 随着室内网络普遍化,无线传感器网络在医疗研究、护理领域也大展身手。主要的应用包括远程健康管理、重症病人或老龄人看护、生活支持设备、病理数据实时采集与管理、紧急救护等。

4)智能家居 智能家居系统的设计目标是将住宅中各种家居设备联系起来,使它们能够自动运行,相互协作,为居住者提供尽可能多的便利和舒适。在家电和家具中嵌入传感器节点,通过无线网络与Intemet连接在一起,将为人们提供更加舒适、方便和更具人性化的智能家居环境。利用远程监控系统,可完成对家电的远程遥控。

5)智能交通应用 智能交通监测系统采用声音、图像、视频、温度、湿度等传感器,节点部署于十字路口周围,部署于车辆上的节点还包括GPS全球定位设备。汇聚节点可以安装在路边立柱、横杠等交通设施上,网关节点可以集成在交叉路口的交通信号控制器内,专用传感器终端节点可以填埋在路面下或者安装在路边,道路上的运动车辆也可以安装传感器节点动态加入传感器网络。通过信号控制器的专有网络,将所采集到的数据发送到交管中心作进一步处理。

5 结束语

无线传感器网络发展非常迅速,在世界许多国家的军事、工业和学术领域引起广泛关注,已成为国际上无线网络研究的热点之一。从国外的研究现状来看,大部分无线传感器网络的研究仍处于理论研究和小规模试验阶段,距离实际应用尚存在一定距离。我国的无线传感器网络的研究仍处于起步阶段。不论在理论研究还是商用领域,无线传感器网络的研究、开发均存在巨大的空间,具有巨大的研究和应用前景。

展开阅读全文

篇5:网络编码在无线通信网络中的应用知识

全文共 4487 字

+ 加入清单

网络编码无线通信网络中的应用知识

研究显示,网络编码是可以逼近网络容量理论传输极限的有效方法,具有确定拓扑的有线网络的网络编码受到了广泛关注。由于无线链路的不可靠性和物理层广播特性非常适合采用网络编码,无线网络环境应该是网络编码首先被应用的领域。目前,基于网络编码的中继技术、协作分集技术以及网络编码和信道编码的联合设计技术,已经引起了人们的广泛关注,有了大量的研究成果。

1网络编码在中继网络中的应用

1.1异或运算

中继节点通过对接收到的数据进行异或(XOR)运算完成信息合并,实现中继节点的数据压缩,这是网络编码技术应用于无线通信网络的最直接的一种形式。文献[2]和[3]研究了Two-way中继网络环境下的基于XOR运算的信息交换,文献[4]和[5]研究了基于网络编码的无线Mesh网演示平台。

1.2置信传播算法

网络编码应用于无线中继网络[6]的另一种形式是采用软信息合并,如图1(a)所示的无线中继网络模型,信源节点S1、S2到中继节点R的信道存在噪声和信号衰落。中继节点R采用置信传播算法计算网络编码信息(即异或结果)的对数似然比(LLR),并发送到目的节点,如图1(b)所示。假设信源S1和S2和是两个独立的二进制随机信源,具有相同的0、1分布,信道为高斯信道,且从信源到中继节点的两个信道状态相同,从信源到目的节点两个信道状态也相同。采用卷积编码对信息进行编码,中继节点R需进行如下操作:

首先,中继节点采用BCJR算法对信源信息进行译码,得到其LLR;

然后,对信源S2码字的LLR信息进行交织操作,减少目的节点D接收到的3个不同信息之间的依赖性;信息的LLR值。

图1(b)中,u1和u2分别表示信源S1和S2信道编码器的输入信息,x1和x2分别表示信源S1和S2信道编码器的输出编码信息。NSR表示信源到中继节点链路上的噪声。中继节点采用BCJR算法分别对信源S1和S2编码信息进行译码,得到其LLR值L 1和L 2。对L 2进行交织操作,且与L 1进行异或运算,得到x1?茌x2的LLR。NSD表示信源到目的节点链路上的噪声,NRD表示中继节点到目的节点上的噪声。y1和y2分别表示目的节点接收到的来自信源S1和S2的信息,而yR表示目的节点接收到的来自中继节点R的信息。

如果中继信道条件很差,上述译码器成为两个独立的卷积译码器;否则,当中继信道条件和网络编码信息的LLR很好时,该译码器成为一个简单的Turbo码译码器。

1.3复数域网络编码

在大规模网络中,传统中继方式降低了频谱的有效性,为进一步提高网络吞吐量,文献[7]提出了复数域网络编码(CFNC)的概念,不仅能够获得1/2符号/信源/时隙(Sym/S/TS)的吞吐量,还可获得完全分集增益。另一方面,CFNC还可实现多个信源之间的信息交换。

首先考虑如图2所示的(2,1,1)无线中继网络,每个节点有一根天线,两个信源S1和S2直接或者通过中继节点R向目的节点D发送信息。

传统的中继传输方案如图2(a)所示,网络吞吐量为1/4Sym/S/TS。由于目的节点两次接收到信息x1和x2,该中继传输方案获得了2阶分集增益。

图2(b)给出了基于有限域网络编码的协作传输模型,中继节点在前两个时隙对信息x1和x2进行检测得到x1和x2,在时隙3将有限域上的编码符号x1?茌x2发送给目的节点D。基于有限域网络编码的吞吐量为1/3Sym/S/TS,可获得2阶分集增益。

基于CFNC的协作传输方案如图2(c)所示。在时隙1,中继节点R同时接收来自信源S1和S2的信号θ1 x1和θ2 x2,系数θ1和θ2属于复数域。在时隙2,中继节点将估计信息x1和x2进行复数域上的合并,发送信号θ1x1+θ2x2。文献[7]分析表明,在无线中继网络采用CFNC不仅可获得1/2Sym/S/TS的吞吐量,还可以获得满分集增益

1.4信道编码和网络编码联合设计

上述几种方案重点研究了网络编码应用于无线中继网络的实现方法,但Effros等人在随机线性编码讨论中,指出很多情况下,需要考虑信道编码和网络编码的联合设计。目前,信道编码和网络编码联合设计方案主要有嵌套编码[8-9]和混合编码[10-12]两种形式。

嵌套编码的基本思想是在中继节点分别对收到的信息进行编码,将编码得到的数据进行异或运算后发送出去,这等价于利用多个独立子码构成一个超码。文献[8]和文献[9]提出了采用嵌套码来实现网络编码和信道编码联合设计的思想。

针对两个源节点、一个中继节点和一个目的节点的无线通信网络结构,文献[10]和文献[11]提出在中继节点采用混合编码方式实现联合网络信道编码的方案,如图3(a)所示。相应地,图3(b)给出了采用分离信道和网络编码的中继节点编码框图。文献[12]针对一个源节点,一个中继节点和一个目的节点的无线通信网络,提出了一种双层LDPC编码方案。

2网络编码在多用户协作通信网络中的研究

2006年,文献[13]在WCNC会议上首次提出了基于网络编码协作分集的概念,分别在两个系统模型中考虑网络编码协作分集:分布式天线系统(DAS)和多用户协作通信网络。研究结果表明,与传统的DAS相比,基于网络编码的DAS具有更好的分集性能,且具有更低的硬件损耗和更高的频谱效率。在多用户协作通信情况下,采用网络编码能获得更高的分集增益。

2.1基于网络编码的自适应译码转发协作传输方案

在网络编码自适应译码转发协作传输(NC-AdDF)方案中[14],若用户成功译码其协作伙伴的信息,在第二个阶段将自己的信息和协作伙伴的信息进行网络编码,并将编码后的信息发送给目的节点;否则,直接将自己的信息发送给目的节点。

图4给出了NC-AdDF网络模型,用户A和B分别向目的节点D广播信息XA和XB。

用户A在第一个阶段传输XA,在第二个阶段传输XA?茌XB或者XA (依赖用户A是否成功译码用户B的信息)。同理,用户B也分别在两个阶段传输XB和XA?茌XB或者XB。对NC-AdDF的中断概率的分析表明,NC-AdDF相对于点对点传输具有更低的中断概率。当信源到目的节点的链路具有较高信噪比(SNR)或者信息传输在第一个阶段分配较大功率时,用户将获得更低的中断概率,改善系统性能。

2.2一种新的适用于协作分集的网络编码算法

基于有限域中信道码字的代数迭加(网络编码)思想,文献[15]提出了一种适用于协作分集的网络编码算法。图5给出了两用户进行协作分集的系统模型。两个用户A和B互为协作伙伴,向目的节点D协作传输数据包,每个用户传输局部信息与中继信息的代数和(网络编码和),用户A和用户B根据各自的不同先验信息分别对得到的码字进行译码。目的节点D根据来自两个用户的码字进行迭代译码。

与非协作分集方案相比,协作分集方案用户需要向其协作伙伴传输局部信息,这就导致了更高的码率或者更低的发送功率,从而会引起相对较高的差错概率,使得用户A和B链路上数据包的差错概率PA,B增加,降低了协作通信成功的概率。文献[15]提出一种新的适用于协作分集的网络编码算法。用户传输局部信息与中继信息的网络编码和,并根据已有的不同先验信息对得到的码字进行译码,目的节点根据来自两个用户的码字进行迭代译码。

表1中表示在时隙t 传输的用户A的局部信息向量,表示用户A在相同的时隙内传输的中继信息向量。类似地,对于用户B也可以定义局部信息向量和中继信息向量。C A(t )和C B(t )分别表示用户A和B在时隙t 发送的n比特码字,GL和GR分别表示局部信息比特和中继信息比特的码字生成矩阵,而且码字速率的大小都为k /n。

用户节点上的编码操作:用户A和B的操作基本一致,下面以以用户A为例进行说明。在时隙t,假定用户A成功译码中继用户B的信息,则用户A首先交织产生中继信息,将用户A局部信息的码字和用户A中继信息的码字进行异或(XOR)操作,生成码字C A(t)=iLA(t)

上述伪随机交织可确保用户B的目的节点译码器向用户A的节点译码器提供的外信息与其获得的其他信息相互独立,有利于目的节点的迭代译码操作。

如果用户A没有成功译码,用户A只对局部信息向量进行编码

节点上的译码操作(目的节点D对进行译码):根据上述编码方案,码字C A(t )和C B(t )中均带有信息,即以局部信息存在于码字C A(t )中,以中继信息存在于C B(t)中。C A(t)和C B(t )存在如下4种组合结构:

(1)C A(t)=GL,C B(t)=GL,此时C A(t)和C B(t)只包含了局部信息,利用GL的译码器对进行译码操作。

(2)C A(t)=GL?茌GR,C B(t)=GL,是交织后的中继信息。可从C B(t -1)获得的关于的外信息作为的先验信息,并使用最大后验概率译码对进行译码。

(3)C A(t )=iGL,C B(t )=GL?茌GR。可在C A(t )和C B(t )的译码器之间进行迭代译码,交换关于和=π()的外信息。

(4)C A(t )=GL?茌GR,C B(t )=GL?茌GR,采用矩阵G=[GL GR]T的软输入-软输出译码器进行迭代译码。由于=π()已经被实现,从C B(t -1)获得的外信息作为先验信息处理C A(t),用0作为先验信息译码。C A(t)和C B(t)的软判决译码器交换关于的外信息。

用户B含有中继信息时,可利用C B(t )和C A(t +1)对数据包进行译码操作,并可迭代译码扩展到多个码字来改善译码性能。以译码为例,除了包含的两个码字C A(t)和C B(t)进行迭代译码,还可以利用码字C A(t+1)和C B(t+1),基本原理如图6所示。

对非合作传输、时分多址合作传输、基于信号迭加的合作传输以及提出的网络编码合作传输4种方案比较可知,几种合作分集方案在高SNR时具有相同的错误曲线斜率,但网络编码合作传输的优势更明显。

3结束语

网络编码作为通信网络中的信息处理和传输理论研究的重大突破,具有重要的理论价值和广阔的应用前景,已被认为是下一代网络关键技术之一。将网络编码技术应用到无线通信系统中能进一步提高网络吞吐量、节省传输能量、增强鲁棒性和安全性。但也存在着如下尚未解决的问题,也是未来的研究方向:

网络编码算法设计。目前已提出了很多网络编码算法,有集中式算法、分布式算法、线性以及分布式编码算法。由于实际分集网络采用网络编码,需要考虑同步、节点开销等问题,设计适用于协作分集的网络编码算法将成为一个非常有意义的研究方向。

降低网络编码的计算复杂度。采用网络编码提高网络吞吐量的同时,增加了网络节点的编码操作,提高了其设计和实现的复杂度。如何在协作网络不显着增加节点开销的情况下,实现有效的网络编码协作分集处理,将有待于进一步的研究。

频率选择性衰落信道下的分集性能研究。目前考虑网络编码在协作分集中的应用,一般都假设信道是平衰落的,但在实际移动通信系统中,信道往往是频率选择性衰落的,这种信道环境下基于网络编码的协作分集将成为一个研究热点。

展开阅读全文

篇6:在无线传感器网络领域Wi-Fi如何打败Zigbee

全文共 2616 字

+ 加入清单

站在技术的角度上来说Wi-Fi的安全性、技术成熟度、现有网络连接、QoS特性、设备互操作性方面这些都是Zigbee还达不到的,尽管Zigbee在尺寸小、单价低等方面优胜WiFi,但是,我们不可否认的是Zigbee的总体成本还是高于WiFi。

Wi-Fi正在吹响全面取代其他无线通信协议的战斗号角,而Intel无疑则是这场战役的大后方。2006年9月从Intel分拆出来的初创公司GainSpan声称,他们已经拥有了在无线传感器网络(WSN)领域战胜Zigbee的技术方案。GainSpan总裁兼首席执行官VijayParmar不久前在上海接受采访时表示,采用这家公司的WSN解决方案,不仅能够享受到成熟的Wi-Fi技术带来的各种好处,还能确保在单节AA电池下维持长达5~10年的电池寿命。

Parmar此行的中国之行除了拜访已有的客户,还包括首次在中国大陆举行的小型记者见面会,意在为其已经拉开帷幕的中国业务造势。据介绍,这款在台积电采用0.18微米工艺制造的SoC芯片采用ARM7内核,可以支持IEEE802.11b/g,并提供了802.11i、AES编码、EAP-FAST三种方式来保证数据和信息安全。另外,根据信号强弱与到达时间(TDOA)大小,还能够提供精确的定位功能。芯片外形尺寸为10mmx10mm。目前,该公司正在积极构建同大学和政府机构的合作关系,并已经同Metatech签署了分销协议。Parmar表示,他计划利用6个月时间在中国大陆建立代表处,北京、上海、深圳将是候选城市。“未来几个月内,我们将致力于提升公司在中国市场的认知度。”

Intel不仅是GainSpan的孕育者,还先后在两轮融资中给了这家新兴公司巨大的财力支持。2006年9月,由于同母公司的主营业务相关度并不是非常大,当时尚属Intel新业务规划小组的一个WSN技术开发团队被决定从Intel拆分出来,成立名为GainSpan的初创公司,专注于将Wi-Fi技术应用于工业领域的WSN网络。IntelCapital、NewVenturePartnersLLC、OVPVenturePartners、SigmaPartners等四家投资公司为其提供了总额150万美金的启动资金。

2007年11月,Intel再次联合其他三家公司、并将设在加州MenloPark市的另外一家风险投资公司OpusCapital拉了进来,对GainSpan进行了第二轮投资。此轮投资金额一跃提高到了2000万美金。

将Wi-Fi用于WSN网络,确实是个不错的主意。因为它能够享受到正在被大规模部署的Wi-Fi网络所带来的成熟的技术、各种层出不穷的Wi-Fi设备、既有的网络设施、架构支持、丰富的网络知识,另外还有快速安装和减少了学习周期和与其他协议互操作而带来的各种麻烦,加快开发周期。

然而,将Wi-Fi用于WSN却又不是一件容易的事情。因为在这种应用中,最先需要解决的就是功耗问题——幸运的是,GainSpan已经将其轻松搞定。虽然没有透露更多的技术细节,但是Parmar表示,有效的激活/待机状态转换以及系统的电源管理是完成这一指标的关键所在。“我们的方案可以实现一节AA电池工作5~10年的寿命,我们是唯一能够做到这一点的公司。”Parmar的自豪溢于言表。

在2006年带队成立GainSpan之前,Parmar曾在Intel公司工作4年左右。稍早的工作经历是在VxTel(一家VoIP解决方案供应商)担任市场部副总裁,后者与2001年被Intel收购。而更早些时候,他供职于AMD公司,曾经担任AMD亚太地区微处理器方面的区域市场总经理一职。这令他对中国市场相当熟悉。

Wi-FiVsZigbee

要谈到WSN,就必需提到Zigbee,事实上,这种技术已经在WSN领域站稳了脚跟。后起的Wi-Fi如何与其进行竞争?Parmar认为,无论从安全性、技术成熟度、与现有网络连接、还是节点管理、QoS特性、设备互操作性方面,Zigbee都远远不及Wi-Fi。“而这些恰恰都是客户所需要的。”他说。

Wi-Fi在WSN网络的优势还不仅限于此。Parmar指出,正在兴起的Wi-Fi网络建设热潮使得Wi-Fi已经成为了无线网络的主流方向。而运用现有的Wi-Fi网络资源来部署和实施WSN将能够节约大量的硬件成本。此外,无需考虑与Zigbee等其他设备的互操作性,还将帮助项目实施者缩短开发周期,这同样意味着更低的项目实施成本。当然,成熟的Wi-Fi还具有既有架构支持与快速安装的优点。“总之,将Wi-Fi用于传感器网络将有助于投资回报(ROI)和总拥有成本(TCO)上利益的最大化。”Parmar表示,“尽管Zigbee具有尺寸小、单价低等优点,但是一旦考虑到总体成本,他们还是要贵很多。”

完整方案

为了帮助客户缩短开发周期,GainSpan还提供了一整套包括SDK、评估平台、开发平台在内的软硬件工具。其软件栈包括了各种I/O驱动和WLAN固件、RTOS、网络栈、系统服务、WLAN和I/O服务模块、各种应用编程接口以及应用软件。Parmar声称,GS1010的SDK能够帮助工程师节约10~12个月的开发时间。而硬件开发平台则能够支持温度、湿度、光敏、压力、加速度等各种传感器,并预留了客户自选的传感器接口和调试以及程序烧录接口。

除了芯片本身之外,客户端管理软件GMS控制系统也在发挥Wi-Fi的优势中起到了很大作用。实时的界面帮助系统控制和采用单跳网络来管理节点可以最大化增加客户端设备电池的续航时间。而支持SNMP、UDP等标准的网络协议则使得Wi-FiWSN能与工业控制、楼宇自动化、企业网络管理系统等已有的网络系统兼容。该软件还可有效的配置、控制、监控传感器节点,实现智能集中控制和管理,并支持固件升级。此外,智能化的数据处理能力还可集中管理、预处理和归纳传感器收集到的数据。

GainSpan已经在去年Q4开始了GS1010的量产。“有数十位客户正在使用我们的芯片开发产品。”Parmar说,“Aginova和RFDigital已经在今年五月推出了采用我们芯片的产品。”而尽管尚处于推广阶段,但他表示,希望能在2009年在账面上实现盈利。

“我们的优势是:最大化的节约电能、更轻松的管理以及最优的控制。”Parmar说,“GainSpan帮你节约成本、节省能源、实现更轻松的工作。”

展开阅读全文

篇7:移动多Sink无线传感器网络监测系统

全文共 1802 字

+ 加入清单

本文设计并构建了移动Sink无线传感器网络监测系统,实现环境监测、事件定位等功能。

1 应用背景

无线传感器网络概念源于对一些人工无法到达或者不便到达的危险/恶劣环境的监测需求,例如:军事应用、特殊环境监测(如:灾害现场、野生动物)等。在这类典型应用场合中,监测网络大多采用随机布设的方式,特定监测事件发生的地点是其关注的重点之一。军事防御、灾害现场监测两类典型的应用需求分析如下:

1.1 军事防御

现代战争中,重要军事设施往往成为敌方攻击的重要目标,利用直接感官进行防御已经无法应对日益丰富、隐蔽的进攻手段,需要集成各种环境监测传感器、语音、视频等多模态监控信息,扩大防御单兵乃至指挥系统的感知范围,增强协同防御能力,快速定位特定事件发生的时间、地点,提升防御系统监测、指挥能力。

1.2 灾害现场监测

近年来我国灾害频繁(特别是矿难事件),灾害监测与救援受到了越来越多的重视。灾害现场往往环境复杂,传统的通信技术难以使用,需要集成各种环境传感器、语音、视频等多模态监控信息,延伸救援人员的感知范围,增强救援人员的协作能力,提升灾害应急指挥能力。

2 系统架构

系统网络结构分为现场监测局域网络和远程监测网络两部分。现场监测局域网络由骨干网与接入网两级网络结构组成,如图1所示。骨干网由移动Sink节点组成,负责将接入网中的节点信息中转至网关节点,并由网关节点实现信息远传。骨干网中直接采用无线MESH技术进行组网(用于传输视频、音频等数据量较大的信息)。接入网分为若干子网,每个接入子网是以骨干网中的移动Sink节点为中心,若干环境感知传感器节点组成的局域网。由于系统需要通过无线传感器网络传输静止的传感器节点采集的环境信息,同时又需要传输移动节点的信息。因而,接入网是一种固定节点与移动节点相混合网络的拓扑结构。在传统的基于树状网络拓扑结构中,Sink节点的移动会造成数据链路最后一跳出现中断,需要重新建立路由树。但是频繁地重新建立路由树,不仅网络能耗代价比较大,而且大量的洪泛消息还容易造成网络风暴,阻碍正常的数据传输。针对这一特点,在系统中设计了基于局部路由维护策略的无线传感器网络路由算法,以降低系统重建路由树时的开销,减少洪泛消息次数,延长网络寿命。

3 系统功能

该系统可以快速、自适应组建无线网络,全面获取环境信息、移动用户生理信息以及事件位置信息,监控指挥中心融合多模态传感器信息快速决策指挥。具有以下5大功能:

3.1 便携式移动指挥

系统可快速、灵活布置在各种场合,组建临时指挥网络。便携式指挥中心(现场监控层)可实时动态获取整个网络区域的监测信息以及发布指挥命令。

3.2 事件定位

基于CC2431集成的硬件定位引擎,设计实现基于加权处理的三边测量定位算法,实现环境感知层中传感器节点自定位,当某个节点探测到事件发生(例如:CH4气体浓度超标、非法人员入侵等),对事件位置进行定位并上传。

3.3 环境信息感知

传感器节点配备人体红外线感知识别模块、温湿度传感器、有毒气体传感器(目前实现CH4与CO两种),可探测环境信息,并将这些信息传输至移动交互层与现场监控层,延伸其感知范围。

3.4 移动用户生理监护

穿戴式设备配备生命体征侦测模块(目前实现心率与血氧浓度两种),指挥中心软件可实时监护前方移动用户的生理参数信息。

3.5 多模态(语音、图像、文字等)交互

系统实现了语音、图像、文字等多种无线通信模式,现场监控后台与移动交互层之间、移动节点之间均可通过多种交互方式(语音、图像、文字)实现双向信息交互。

4 接入网性能测试

由于接入网是一个由静态节点与移动节点组成混合网络拓扑结构,数据路由呈现出动态性,因此,下面对接入网中的几个路由关键指标进行测试,用于评价网络通信性能。

4.1 各个跳数等级下的丢包率测试

(1)测试目的:网络层在各个跳数等级下的丢包率。

(2)测试方法:将多个节点依次排列(形成线型n(n>0)跳排列方式),其中节点N1,Nn分别处于两端,N1每隔0.5 s发送一个标有ID的数据报文(长度:20 B),报文ID编号为0~999。测试在不同的n值下,Nn收到的报文个数为m,丢包率a=m/1 000。

(3)测试跳数:1~5跳。

(4)测试次数:测试10次取平均值。

(5)测试数据分析:如图2所示。

(6)测试结果评估:网络层在各个跳数等级下的丢包率随节点跳数增加而增加,平均丢包率为0.3%。

展开阅读全文

篇8:解析无线传感器网络节点定位与算法步骤

全文共 1417 字

+ 加入清单

定位无线传感器网络中的一个重要的研究方向,定位算法的优劣直接影响着无线传感器网络在实际应用中是否可行。测量的数据不同以及使用的坐标计算方法的不同导致了各种不同的定位算法的产生。

质心定位算法是通过计算发送信息的锚节点所组成的多边形的质心做为未知节点的坐标位置的一种算法。质心算法基于网络连通性对未知节点进行定位,无需锚节点与未知节点进行协同操作,是一种非常简单而且易于实现的定位算法,对于那些对定位精度要求不高的应用,质心算法是一个很好的定位方法。

DV-Hop算法的基本思想是先获得未知节点与锚节点的跳数,然后计算网络平均每跳的距离,再通过跳数与平均每跳的距离的乘积得到未知节点与锚节点的距离,最后,通过未知节点与至少3个锚节点之间的距离得到未知节点的位置坐标。DV-Hop定位算法是一种无需测距技术的、完全基于节点密度的、适用于密集部署的各向同性网络的定位算法。

MDS-MAP定位算法的基本思想是先从全局角度生成网络拓扑连通图,当节点有测距能力时,用测距结果作为每条边的值,否则,用所有边赋值为1,表示仅有连通性信息,生成节点间距矩阵。然后用多维标度技术MDS(MulTIdimensionalScaling)生成网络的相对坐标系统,最后,使用不在同一直线的n+1个锚节点信息把n维的相对坐标系统转化为绝对坐标系统。

分簇算法把网络中的传感器节点组织成簇的形式,只在一个簇范围内传输信息,不需要把控制消息传遍整个网络,可以有效地减少网络的能量消耗。

簇成员的功能比较简单,不需要维护复杂的路由信息,具有很好的可扩充性。

簇头节点由簇头选举算法选举产生,能根据网络拓扑的变化动态分簇,具有很强的抗毁性和鲁棒性。但是分簇算法中的簇头选择算法复杂度较高,而且簇头节点还可能会成为网络的瓶颈,从而影响网络的能量消耗和定位效率。

改进的无线传感器网络节点定位算法

分簇算法的定位精度较高,但是其计算量也较大,用RSSI测距方法定位却不够精确。首先,把无线传感器网络划分成多个区域,然后在每个区域内使用RSSI测距方法,通过多个锚节点计算未知节点的位置,最后,计算多个结果求出平均值最为最后的定位结果。

网络区域的划分是按照锚节点的距离为依据的,先计算网络中所有锚节点之间的距离,选择最近的几个锚节点作为一个网络区域,在该区域内的未知节点就用这些锚节点来定位。用RSSI测距方法测量未知节点与范围内的锚节点的距离,用极大似然估计法计算未知节点的位置,并存储于该节点中。最后,计算存储在未知节点中的多个坐标数据的平均值,把平均坐标值作为节点的最终坐标。

对于网络边界的未知普通节点,它们周围的锚节点数量较少,不适于上面的方法。可以通过它们周围已经定位的普通节点来定位网络边界节点,把这些已经知道位置的普通节点看成上面方法中的锚节点,使用上面的步骤完成定位。

算法的具体步骤:

(1)计算网络中锚节点之间的距离,并存储离它较近的几个锚节点的信息。

(2)以几个锚节点为边界划分定位区域,锚节点的个数决定越多定位精度越高。

(3)在每个区域内,使用RSSI方法测量未知节点与几个锚节点的距离。

(4)通过极大似然估计法计算未知节点的位置坐标,并把数据保存在未知节点中。

(5)对要定位的未知节点重复(3)(4)步骤。

(6)对网络中每个区域中要定位的节点同时进行(3)(4)(5)步骤。

(7)网络中每个未知节点对本身存储的多个坐标计算平均值,把平均坐标值更新为该节点的最新坐标值。

(8)处理网络的边界未知节点。

展开阅读全文

篇9:无线传感器网络节点数据短距离接收研究

全文共 2308 字

+ 加入清单

一、引言

无线传感器网络将成百上千的传感器节点布置在一个特定的区域内形成监测网络,这些节点通过特定的协议高效、稳定、正确的组织起来,协同工作完成某项应用任务,达到数据采集、无线通信和信息处理的能力。无线传感器网络节点可以实时传送监测数据,具有快速构建、部署方便的特点,不易受到目标环境的限制,因此在环境监测、城市交通管理、医疗监护、仓储管理、汽车电子等领域有较好的应用。

在无线传感器网络中的节点通常是一个微型的嵌入式系统,对采集数据、接收数据、处理数据、发送数据等的功能要求各有兼顾,其处理能力、存储能力和通信能力都是对采集的数据进行管理和协同工作,因此传感器网络节点的软硬件技术是传感器网络研究的重点。本文主要是对无线传感器网络节点数据的短距离接收进行设计探讨。

二、接收节点工作原理

无线传感器网络数据接收节点模块主要由接收芯片T5743 和MCU 微处理器PIC18F6620 构成,如图1,发射端采用ATMEL 公司的的T5754 做为数据发射芯片,与接收芯片T5743 相匹配,以一定的发射接收频率和数据传输速率协同工作。接收芯片T5743 通过DATA 串行双向数据线与MCU微处理器PIC18F6620 的I/O 口进行通讯,MCU 微处理器接收数据时,用DATA_CLK 作为同步时钟,微处理器PIC18F6620 向接收芯片T5743 发送指令时依靠特殊时序来达成数据接收和处理。接收过程用软件控制的方式来进行数据传送和实现对接收芯片T5743 的控制,在接收数据之前,微处理器PIC18F6620 通过DATA 线将MUC 内的程序写入接收芯片的配置寄存器里,对接收芯片进行配置,随后等待接收数据;当有数据来时,由接收芯片T5743 的LNA_IN 端接入,经低噪声放大器放大后送入混频器,使其变换成中频;在中频级,经变换的信号在送入解调器之前被放大和滤波。

三、接收节点芯片

ATMEL的T5743芯片是集成UHF 无线电接收模块,带有PLL 锁相环结构的接收芯片,采用SO20 封装[2]。T5743芯片是为满足低数据率、低成本RF 数据传输系统的要求而开发出来的,其数据传输速度为1~10kB/s,编码方式为曼切斯特或双相位方式,可用于接收频率范围为300MHz~450MHz(433.92MHz 和315MHz)的ASK 数据传输;高灵敏度,全集成VCO,可实现低功耗功能,电源电压4.5V~5.5V;单端RF 输出容易与天线或PCB 版的印制天线相适配;

工作温度范围为-40℃~105℃。

T5743 芯片带有一双向串行数据接口DATA,通过DATA 芯片可与MCU 进行串行通讯,交换信息。它可以工作在2 种典型频率433.92MHz 和315MHz,由MODE 引脚来选择,置高为433.92MHz,置低为315MHz,接收频率在1kB~10kB 之间可选,由软件设定。设计中由于采用1MHz 中频与前端SAW滤波器相配合实现了高镜像抑制,基于使新型SAW 器件,达到了40dB 抑制,并能用简单的双向数据线实现与微控制器的通信,利用单独引脚经微控制器实现电源管理。

T5743 芯片的RF 前端是一个超外差结构,将射频输入信号变换成1MHz IF 信号。RF 前端由低噪声放大器LNA,

本地振荡器LO、混频器和RF 放大器组成。LO 是由PLL 锁相环产生的载波频率,供混频器使用。RF 信号经RF 输入脚LNA-IN 输入,在433.92MHz 时输入阻抗为1000Ω/pF,在设计输入网络时首先考虑噪声匹配,适当调整元件值和印制板的分布电感电容与输入端的匹配,达到T5743 在高信噪比时灵敏度最高。这样,从RF 前端来的信号经全集成4 阶IF 滤波器滤波,达到334.92MHz 的应用,中频的中心频率为l MHz。

设计中解调器的工作方式由寄存器OPMODE 设置,逻辑“L”设置解调器为FSK 方式;逻辑“H”设置解调器为ASK方式。在ASK 方式使用了自动门限控制电路,它将检测参考电压设置在一个能获得好信噪比的适当值上,这个电路也能有效抑制任何类型的带内噪声信号或竞争发射,如果S/N 超过10dB 即能很好检测出数据信号。在FSK 方式下,如果S/N超过2dB 就能检测出数字信号。

解调器的输出信号,经数字滤波器滤波后送到数字信号处理电路,数字滤波器的通带与数据信号的特性相匹配。数字滤波器由1阶高通和3 阶低通滤波器组成。高通滤波器的截止频率fcu _ DF 由公式(1)决定。低通滤波器的截止频率由所选波特率范围(BR-Range)决定,BR-Range 在OPMODE 寄存器中设定,BR-Range 的设置必须与波特率相适应。

无线传感器网络接收节点的数字电路和模拟滤波器的全部定时都是来自一个时钟。这一时钟周期TCLK 是从晶体振荡器经分频器得到的,分频次数由MODE 引脚端的逻辑状态控制[3]。晶体振荡器的频率是由RF 输入信号决定的,它也同时决定了本地振荡器的频率(fLO)。T5743 芯片的工作状态是由OPMODE 和LIMIT 的两个15 位RAM 寄存器进行设置的,寄存器可由双向DATA 口编程。如果寄存器内容由于掉电而改变,这一状态由一个称为复位标识(RM)的输出表示出来,在这种情况下的接收电路必须重新编程。在加电复位(POR)后,寄存器被置为默认模式,如果接收机工作默认模式,不需对寄存器编程。同样,如果接收电路不是在复位方式,就会启动相应的OFF 指令编程;如果接收电路处在复位方式,相应的OFF 指令编程不会被启动,在DATA 脚仍呈现复位标志。

展开阅读全文

篇10:基于最小能耗的无线传感器网络路由算法

全文共 1258 字

+ 加入清单

无线传感器网络(Wireless Sensor Networks,WSNs)是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织网络系统。同时,网络中的节点拥有感知能力、无线通信能力以及计算能力。由于无线传感器网络具有不依赖与任何预设网络设施等特点,所以在军事应用、大型设备监控和环境监测和预报等领域,传感器网络都有着广泛的应用前景。传感器网络中节点分布数量众多,且能量是由容量有限的电池供电,更换不易。传感器节点消耗能量的模块包括传感器模块、处理器模块和无线通信模块。随着集成电路工艺的进步,处理器和传感器模块的功耗变得很低,绝大部分能量消耗在无线通信模块上。所以如何设计节能高效的路由策略是延长网络生存周期的重要手段。

近些年来,一些节能高效的路由算法相继被提出。文献通过引入长期睡眠机制,防止网络中的某些节点因为过早耗尽能量而死亡,引起网络无效。文献设计了一种无线传感器网络通信架构ADOCA,有效地改善了无限传感器网络通信的有效性。文献提出了一种基于多蚁群无线传感器网络路由算法,采用多种蚁群并行搜索,并在种群中采用基于目标函数值的启发式信息素分配策略和根据目标函数自动调整蚂蚁搜索路径。文献中针对SPR路由算法进行改进,提出了EB-SPR算法。将网络构造成层次结构,节点根据上一层邻节点能量水平优先使用能量多的节点作为下一跳来转发数据包,但是这种算法中节点需要时刻维护各个邻节点能量信息,增加了数据传输量。文献提出了最早的分层路由协议之一,LEACH算法。通过循环的方式随机选择簇首节点,将整个网络的能量负载平均分配到每个传感器节点中,从而达到降低网络能耗、提高网络整体生存时间的目的。本文提出了一种新的基于最小能耗的无线传感器网络路由算法,并对网络中能量过低的节点采取休眠处理,延长了网络的生命周期。

1 无线传感器网络能量消耗研究和路由分析

1.1 无线传感器网络能量消耗研究

传感器网络节点主要有传感器模块,处理器模块,无线通信模块和能量供应模块。随着技术的进步,目前传感器模块和处理器模块能耗越来越低。但是,传感器节点传输信息时要比执行计算时更消耗电能,传输1 b信息到100 m距离需要的能量大约相当于执行3 000条指令消耗的能量。

本文假设一个简单的无线通信电路模型,其中发送和接收电路消耗能量Eelec=50 nJ/b,发送放大器消耗能量εamp=100 pJ/(b/m2)。所以,使用该模型从节点A传输kb信息至距离为d的节点B时,节点A消耗的能量为ETx(k,d)=Eeleck+εampkd2,接收该信息,节点B消耗的能量为ERx(k)=Eeleck。如图1所示。

无线通信模块存在发送、接收、空闲和睡眠4种状态。无线通信模块在空闲状态一直监听无线信道的使用情况,检查是否有数据发送给自己,而在睡眠状态则关闭通信模块。从图2中可看到,无线通信模块在发送状态的能量消耗最大,在空闲状态和接收状态的能量消耗接近,略少于发送状态的能量消耗,在睡眠状态的能量消耗最少。

展开阅读全文