0

总线

总线知识专题栏目,提供与总线相关内容的知识集合,希望能快速帮助您找到有用的信息以解决您遇到的总线问题。

分享

浏览

994

文章

33

插入U盘没反应、通用串行总线控制器黄色叹号

全文共 420 字

+ 加入清单

U盘插到电脑上时,没有像往常一样弹出发现新硬件提示,到设备管理器里的“通用串行总线控制器”里可以看到这个设备,但前面有黄色叹号。这种情况该怎么办呢?

操作方法

1

我们可以先换个USB插口试试,不管前面板还是机箱后面,各个USB插口由于某些原因供电和电气性能都是有些差别的,相对来说说后面的要比前面的要好用些。

2

现在的电脑都有USB3.0接口(一般是蓝色的),需要专门的驱动程序,如果只是USB3.0接口(一般是蓝色的)不能用,很有可能是系统未安装USB3.0驱动,可以通过驱动软件安装驱动,笔记本也可到此品牌的官网去下载驱动安装。

3

当所有USB接口都不能用时,要分析是系统的问题还是硬件的问题。用启动U盘进入PE系统看下,如果在PE系统里鼠标能用,那就重做系统即可解决。

4

如果在PE里也不能用,那就是硬件的问题了,台式机的话可以更换电源试试,因为电源输出电压不稳会导致主板USB供电不足。笔记本的话有可能是主板的USB供电的电路出了问题,只能找专业人士维修了。

展开阅读全文

前端总线频率是什么?

全文共 972 字

+ 加入清单

前端总线频率是什么? 总线是将信息以一个或多个源部件传送到一个或多个目的部件的一组传输线。通俗的说,就是多个部件间的公共连线,用于在各个部件之间传输信息。人们常常以MHz表示的速度来描述总线频率。总线的种类很多,前端总线的英文名字是Front Side Bus,通常用FSB表示,是将CPU连接到北桥芯片的总线。计算机的前端总线频率是由CPU和北桥芯片共同决定的。

北桥芯片负责联系内存、显卡等数据吞吐量最大的部件,并和南桥芯片连接。CPU就是通过前端总线(FSB)连接到北桥芯片,进而通过北桥芯片和内存、显卡交换数据。前端总线是CPU和外界交换数据的最主要通道,因此前端总线的数据传输能力对计算机整体性能作用很大,如果没足够快的前端总线,再强的CPU也不能明显提高计算机整体速度。数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz几种,前端总线频率越大,代表着CPU与北桥芯片之间的数据传输能力越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU,较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。

外频与前端总线频率的区别:前端总线的速度指的是CPU和北桥芯片间总线的速度,更实质性的表示了CPU和外界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了PCI及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来。

展开阅读全文

前端总线频率

全文共 994 字

+ 加入清单

前端总线频率总线是将信息以一个或多个源部件传送到一个或多个目的部件的一组传输线。通俗的说,就是多个部件间的公共连线,用于在各个部件之间传输信息。人们常常以MHz表示的速度来描述总线频率。总线的种类很多,前端总线的英文名字是Front Side Bus,通常用FSB表示,是将CPU连接到北桥芯片的总线。计算机的前端总线频率是由CPU和北桥芯片共同决定的。

北桥芯片负责联系内存、显卡等数据吞吐量最大的部件,并和南桥芯片连接。CPU就是通过前端总线(FSB)连接到北桥芯片,进而通过北桥芯片和内存、显卡交换数据。前端总线是CPU和外界交换数据的最主要通道,因此前端总线的数据传输能力对计算机整体性能作用很大,如果没足够快的前端总线,再强的CPU也不能明显提高计算机整体速度。数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz几种,最高到1066MHz。前端总线频率越大,代表着CPU与北桥芯片之间的数据传输能力越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU,较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。

外频与前端总线频率的区别:前端总线的速度指的是CPU和北桥芯片间总线的速度,更实质性的表示了CPU和外界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了PCI及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来,目前的主流产品均采用这些技术。

展开阅读全文

计算机内部总线,计算机内部总线是什么意思

全文共 638 字

+ 加入清单

计算机内部总线,计算机内部总线是什么意思由于计算机内部的主要工作过程是信息传送和加工的过程,因此在机器内部各部件之间的数据传送非常频繁。为了减少内部的传送线并便于控制,通常将一些寄存器之间数据传送的通路加以归并,组成总线结构,使不同来源的信息在此传输线上分时传送。根据总线所在位置,总线分为内部总线和外部总线两类。内部总线是指CPU内各部件的连线,而外部总线是指系统总线,即CPU与存储器、I/O系统之间的连线。本节只讨论内部总线。按总线的逻辑结构来说,总线可分为单向传送总线和双向传送总线。所谓单向总线,就是信息只能向一个方向传送。所谓双向总线,就是信息可以分两个方向传送,既可以发送数据,也可以接收数据。图2.14(a)是带有缓冲驱动器的4位双向数据总线。其中所用的基本电路就是三态逻辑电路。当“发送”信号有效时,数据从左向右传送。反之,当“接收”信号有效时,数据从右向左传送。这种类型的缓冲器通常根据它们如何使用而叫作总线扩展器、总线驱动器、总线接收器等等。

图2.14 由三态门组成的双向数据总线

图2.14(b)所示的是带有锁存器的4位双向数据总线。它主要由一个DE触发器和一个三态缓冲器组成。DE触发器是在一个普通D触发器上另加一个E输入端(允许端)而构成的。此处E输入端用以控制D的输入。若E=0,即使D为“1”,也不能输入。当接收数据时,E=1三态门被禁止,因而数据总线上的数据被接收到锁存器。当发送数据时,E=0,三态门被允许,因而锁存器的数据发送至数据总线上。

展开阅读全文

什么是CPU前端总线频率

全文共 3222 字

+ 加入清单

什么是CPU前端总线频率

NVIDIA该系列最新的芯片组能够支持1333MHz的前端总线频率, 总线是将信息以一个或多个源部件传送到一个或多个目的部件的一组传输线。通俗的说,就是多个部件间的公共连线,用于在各个部件之间传输信息。人们常常以MHz表示的速度来描述总线频率。总线的种类很多,前端总线的英文名字是Front Side Bus,通常用FSB表示,是将CPU连接到北桥芯片的总线。计算机的前端总线频率是由CPU和北桥芯片共同决定的。

北桥芯片负责联系内存、显卡等数据吞吐量最大的部件,并和南桥芯片连接。CPU就是通过前端总线(FSB)连接到北桥芯片,进而通过北桥芯片和内存、显卡交换数据。前端总线是CPU和外界交换数据的最主要通道,因此前端总线的数据传输能力对计算机整体性能作用很大,如果没足够快的前端总线,再强的CPU也不能明显提高计算机整体速度。数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz几种,前端总线频率越大,代表着CPU与北桥芯片之间的数据传输能力越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU,较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。

外频与前端总线频率的区别:前端总线的速度指的是CPU和北桥芯片间总线的速度,更实质性的表示了CPU和外界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了PCI及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来。此外,在前端总线中比较特殊的是AMD64的HyperTransport。

目前各种芯片组所支持的前端总线频率(FSB):Intel平台系列Intel芯片组: 845、845D、845GL所支持的前端总线频率是400MHz,845E、845G、845GE、845PE、845GV以及865P、910GL所支持的前端总线频率是533MHz,而865PE、865G、865GV、848P、875P、915P、915G、915GV、915PL、915GL、925X、945PL、945GZ所支持的前端总线频率是800MHz,定位于欢跃(VIIV)平台的945GT所支持的前端总线频率是533MHz和667MHz,高端的925XE、945P、945G、955X、975X所支持的前端总线频率是1066MHz。946PL和946GZ所支持的前端总线频率是800MHz,而P965、G965、Q965和Q963所支持的前端总线频率则都是1066MHz。

VIA芯片组: P4X266、P4X266A、P4M266所支持的前端总线频率是400MHz,P4X266E、P4X333、P4X400、P4X533所支持的前端总线频率是533MHz,PT800、PT880、PM800、PM880、P4M800、P4M800 Pro、PT880 Pro所支持的前端总线频率是800MHz,PT880 Ultra、PT894、PT894 Pro、PT890所支持的前端总线频率也高达1066MHz。P4M890所支持的前端总线频率是800MHz,而P4M900所支持的前端总线频率则是1066MHz。

SIS芯片组: SIS645、SIS645DX、SIS650所支持的前端总线频率是400MHz,SIS651、SIS655、SIS648、SIS661GX所支持的前端总线频率是533MHz,SIS648FX、SIS661FX、SIS655FX、SIS655TX、SIS649、SIS656、SIS662所支持的前端总线频率是800MHz,SIS649FX和SIS656FX所支持的前端总线频率则高达1066MHz。

ATI芯片组: Radeon 9100 IGP、Radeon 9100 Pro IGP、RX330、Radeon Xpress 200 IE(RC410)、Radeon Xpress 200 IE(RXC410)所支持的前端总线频率是800MHz,Radeon Xpress 200 IE(RS400)、Radeon Xpress 200 CrossFire IE(RD400)、CrossFire Xpress 1600 IE所支持的前端总线频率则高达1066MHz。

ULI芯片组: M1683和M1685所支持的前端总线频率是800MHz。

NVIDIA芯片组: nForce4 SLI IE、nForce4 SLI X16 IE、nForce4 SLI XE、nForce4 Ultra IE所支持的前端总线频率全部都高达1066MHz。nForce 590 SLI IE、nForce 570 SLI IE和nForce 570 Ultra IE所支持的前端总线频率全部都是1066MHz。

AMD平台系列VIA芯片组: KT266、KT266A、KM266所支持的前端总线频率是266MHz,KT333、KT400、KT400A、KM400、KN400所支持的前端总线频率是333MHz,KT600和KT880所支持的前端总线频率是400MHz。

SIS芯片组: SIS735、SIS745、SIS746、SIS740所支持的前端总线频率是266MHz,SIS741GX和SIS746FX所支持的前端总线频率是333MHz,SIS741和SIS748所支持的前端总线频率是400MHz。

Uli芯片组: M1647所支持的前端总线频率是266MHz。

nVidia芯片组: nForce2 IGP、nForce2 400和nForce2 Ultra 400所支持的前端总线频率是400MHz。

此外,由于AMD64系列CPU内部整合了内存控制器,其HyperTransport频率只与CPU接口类型有关,而与主板芯片组无关,所以其HyperTransport频率的区分是相当简单的:Socket 754接口的所有CPU的HyperTransport频率都是800MHz;Socket 939接口的Sempron的HyperTransport频率是800MHz,除Sempron之外的所有Socket 939接口CPU的HyperTransport频率都是1000MHz;旧版的Socket 940接口CPU的HyperTransport频率也是800MHz,而新版的Socket 940接口CPU的HyperTransport频率也已经提高到了1000MHz;Socket S1接口的所有CPU的HyperTransport频率都是800MHz;Socket AM2接口的Sempron的HyperTransport频率是800MHz,除Sempron之外的所有Socket AM2接口CPU的HyperTransport频率都是1000MHz;即将发布的Socket F接口Opteron的HyperTransport频率则都是1000MHz。

展开阅读全文

显卡总线接口类型

全文共 4512 字

+ 加入清单

显卡总线接口类型总线接口类型是指显卡与主板连接所采用的接口种类。显卡的接口决定着显卡与系统之间数据传输的最大带宽,也就是瞬间所能传输的最大数据量。不同的接口决定着主板是否能够使用此显卡,只有在主板上有相应接口的情况下,显卡才能使用,并且不同的接口能为显卡带来不同的性能。

目前各种3D游戏和软件对显卡的要求越来越高,主板和显卡之间需要交换的数据量也越来越大,过去的显卡接口早已不能满足这样大量的数据交换,因此通常主板上都带有专门插显卡的插槽。假如显卡接口的传输速度不能满足显卡的需求,显卡的性能就会受到巨大的限制,再好的显卡也无法发挥。显卡发展至今主要出现过ISA、PCI、AGP、PCI Express等几种接口,所能提供的数据带宽依次增加。其中2004年推出的PCI Express接口已经成为主流,以解决显卡与系统数据传输的瓶颈问题,而ISA、PCI接口的显卡已经基本被淘汰。

PCI接口

PCI是Peripheral Component Interconnect(外设部件互连标准)的缩写,它是目前个人电脑中使用最为广泛的接口,几乎所有的主板产品上都带有这种插槽。PCI插槽也是主板带有最多数量的插槽类型,在目前流行的台式机主板上,ATX结构的主板一般带有5~6个PCI插槽,而小一点的MATX主板也都带有2~3个PCI插槽,可见其应用的广泛性。

PCI是由Intel公司1991年推出的一种局部总线。从结构上看,PCI是在CPU和原来的系统总线之间插入的一级总线,具体由一个桥接电路实现对这一层的管理,并实现上下之间的接口以协调数据的传送。管理器提供了信号缓冲,使之能支持10种外设,并能在高时钟频率下保持高性能,它为显卡,声卡,网卡,MODEM等设备提供了连接接口,它的工作频率为33MHz/66MHz。

最早提出的PCI 总线工作在33MHz 频率之下,传输带宽达到了133MB/s(33MHz X 32bit/8),基本上满足了当时处理器的发展需要。随着对更高性能的要求,1993年又提出了64bit 的PCI 总线,后来又提出把PCI 总线的频率提升到66MHz 。目前广泛采用的是32-bit、33MHz 的PCI 总线,64bit的PCI插槽更多是应用于服务器产品。

由于PCI 总线只有133MB/s 的带宽,对声卡、网卡、视频卡等绝大多数输入/输出设备显得绰绰有余,但对性能日益强大的显卡则无法满足其需求。目前PCI接口的显卡已经不多见了,只有较老的PC上才有,厂商也很少推出此类接口的产品。当然,很多服务器不需要显卡性能好,因此使用古老的PCI显卡。通常只有一些完全不带有显卡专用插槽(例如AGP或者PCI Express)的主板上才考虑使用PCI显卡,例如为了升级845GL主板。PCI显卡性能受到极大限制,并且由于数量稀少,因此价格也并不便宜,只有在不得已的情况才考虑使用PCI显卡。

AGP接口

AGP(Accelerate Graphical Port),加速图形接口。随着显示芯片的发展,PCI总线日益无法满足其需求。英特尔于1996年7月正式推出了AGP接口,它是一种显示卡专用的局部总线。严格的说,AGP不能称为总线,它与PCI总线不同,因为它是点对点连接,即连接控制芯片和AGP显示卡,但在习惯上我们依然称其为AGP总线。AGP接口是基于PCI 2.1 版规范并进行扩充修改而成,工作频率为66MHz。

AGP总线直接与主板的北桥芯片相连,且通过该接口让显示芯片与系统主内存直接相连,避免了窄带宽的PCI总线形成的系统瓶颈,增加3D图形数据传输速度,同时在显存不足的情况下还可以调用系统主内存。所以它拥有很高的传输速率,这是PCI等总线无法与其相比拟的。

由于采用了数据读写的流水线操作减少了内存等待时间,数据传输速度有了很大提高;具有133MHz及更高的数据传输频率;地址信号与数据信号分离可提高随机内存访问的速度;采用并行操作允许在CPU访问系统RAM的同时AGP显示卡访问AGP内存;显示带宽也不与其它设备共享,从而进一步提高了系统性能。

AGP标准在使用32位总线时,有66MHz和133MHz两种工作频率,最高数据传输率为266Mbps和533Mbps,而PCI总线理论上的最大传输率仅为133Mbps。目前最高规格的AGP 8X模式下,数据传输速度达到了2.1GB/s。

AGP接口的发展经历了AGP1.0(AGP1X、AGP2X)、AGP2.0(AGP Pro、AGP4X)、AGP3.0(AGP8X)等阶段,其传输速度也从最早的AGP1X的266MB/S的带宽发展到了AGP8X的2.1GB/S。

AGP 1.0(AGP1X、AGP2X) 1996年7月AGP 1.0 图形标准问世,分为1X和2X两种模式,数据传输带宽分别达到了266MB/s和533MB/s。这种图形接口规范是在66MHz PCI2.1规范基础上经过扩充和加强而形成的,其工作频率为66MHz,工作电压为3.3v,在一段时间内基本满足了显示设备与系统交换数据的需要。这种规范中的AGP带宽很小,现在已经被淘汰了,只有在前几年的老主板上还见得到。

AGP2.0(AGP4X)显示芯片的飞速发展,图形卡单位时间内所能处理的数据呈几何级数成倍增长,AGP 1.0 图形标准越来越难以满足技术的进步了,由此AGP 2.0便应运而生了。1998年5月份,AGP 2.0 规范正式发布,工作频率依然是66MHz,但工作电压降低到了1.5v,并且增加了4x模式,这样它的数据传输带宽达到了1066MB/sec,数据传输能力大大地增强了。

AGP ProAGP Pro接口与AGP 2.0同时推出,这是一种为了满足显示设备功耗日益加大的现实而研发的图形接口标准,应用该技术的图形接口主要的特点是比AGP 4x略长一些,其加长部分可容纳更多的电源引脚,使得这种接口可以驱动功耗更大(25-110w)或者处理能力更强大的AGP显卡。这种标准其实是专为高端图形工作站而设计的,完全兼容AGP 4x规范,使得AGP 4x的显卡也可以插在这种插槽中正常使用。AGP Pro在原有AGP插槽的两侧进行延伸,提供额外的电能。它是用来增强,而不是取代现有AGP插槽的功能。根据所能提供能量的不同,可以把AGP Pro细分为AGP Pro110和AGP Pro50。在某些高档台式机主板上也能见到AGP Pro插槽,例如华硕的许多主板。

AGP 3.0(AGP8X)2000年8月,Intel推出AGP3.0规范,工作电压降到0.8V,并增加了8x模式,这样它的数据传输带宽达到了2133MB/sec,数据传输能力相对于AGP 4X成倍增长,能较好的满足当前显示设备的带宽需求。

AGP接口的模式传输方式不同AGP接口的模式传输方式不同。1X模式的AGP,工作频率达到了PCI总线的两倍—66MHz,传输带宽理论上可达到266MB/s。AGP 2X工作频率同样为66MHz,但是它使用了正负沿(一个时钟周期的上升沿和下降沿)触发的工作方式,在这种触发方式中在一个时钟周期的上升沿和下降沿各传送一次数据,从而使得一个工作周期先后被触发两次,使传输带宽达到了加倍的目的,而这种触发信号的工作频率为133MHz,这样AGP 2X的传输带宽就达到了266MB/s×2(触发次数)=533MB/s的高度。AGP 4X仍使用了这种信号触发方式,只是利用两个触发信号在每个时钟周期的下降沿分别引起两次触发,从而达到了在一个时钟周期中触发4次的目的,这样在理论上它就可以达到266MB/s×2(单信号触发次数)×2(信号个数)=1066MB/s的带宽了。在AGP 8X规范中,这种触发模式仍然使用,只是触发信号的工作频率变成266MHz,两个信号触发点也变成了每个时钟周期的上升沿,单信号触发次数为4次,这样它在一个时钟周期所能传输的数据就从AGP4X的4倍变成了8倍,理论传输带宽将可达到266MB/s×4(单信号触发次数)×2(信号个数)=2133MB/s的高度了。

目前常用的AGP接口为AGP4X、AGP PRO、AGP通用及AGP8X接口。需要说明的是由于AGP3.0显卡的额定电压为0.8—1.5V,因此不能把AGP8X的显卡插接到AGP1.0规格的插槽中。这就是说AGP8X规格与旧有的AGP1X/2X模式不兼容。而对于AGP4X系统,AGP8X显卡仍旧在其上工作,但仅会以AGP4X模式工作,无法发挥AGP8X的优势。

PCI Express接口

PCI Express(以下简称PCI-E)采用了目前业内流行的点对点串行连接,比起PCI以及更早期的计算机总线的共享并行架构,每个设备都有自己的专用连接,不需要向整个总线请求带宽,而且可以把数据传输率提高到一个很高的频率,达到PCI所不能提供的高带宽。相对于传统PCI总线在单一时间周期内只能实现单向传输,PCI-E的双单工连接能提供更高的传输速率和质量,它们之间的差异跟半双工和全双工类似。

PCI-E的接口根据总线位宽不同而有所差异,包括X1、X4、X8以及X16,而X2模式将用于内部接口而非插槽模式。PCI-E规格从1条通道连接到32条通道连接,有非常强的伸缩性,以满足不同系统设备对数据传输带宽不同的需求。此外,较短的PCI-E卡可以插入较长的PCI-E插槽中使用,PCI-E接口还能够支持热拔插,这也是个不小的飞跃。PCI-E X1的250MB/秒传输速度已经可以满足主流声效芯片、网卡芯片和存储设备对数据传输带宽的需求,但是远远无法满足图形芯片对数据传输带宽的需求。 因此,用于取代AGP接口的PCI-E接口位宽为X16,能够提供5GB/s的带宽,即便有编码上的损耗但仍能够提供约为4GB/s左右的实际带宽,远远超过AGP 8X的2.1GB/s的带宽。

尽管PCI-E技术规格允许实现X1(250MB/秒),X2,X4,X8,X12,X16和X32通道规格,但是依目前形式来看,PCI-E X1和PCI-E X16已成为PCI-E主流规格,同时很多芯片组厂商在南桥芯片当中添加对PCI-E X1的支持,在北桥芯片当中添加对PCI-E X16的支持。除去提供极高数据传输带宽之外,PCI-E因为采用串行数据包方式传递数据,所以PCI-E接口每个针脚可以获得比传统I/O标准更多的带宽,这样就可以降低PCI-E设备生产成本和体积。另外,PCI-E也支持高阶电源管理,支持热插拔,支持数据同步传输,为优先传输数据进行带宽优化。

在兼容性方面,PCI-E在软件层面上兼容目前的PCI技术和设备,支持PCI设备和内存模组的初始化,也就是说过去的驱动程序、操作系统无需推倒重来,就可以支持PCI-E设备。目前PCI-E已经成为显卡的接口的主流,不过早期有些芯片组虽然提供了PCI-E作为显卡接口,但是其速度是4X的,而不是16X的,例如VIA PT880 Pro和VIA PT880 Ultra,当然这种情况极为罕见。

展开阅读全文

SCSI接口-总线终结器

全文共 518 字

+ 加入清单

SCSI接口-总线终结

总线终结器ID(identify)作为SCSI设备在SCSI总线的唯一识别符,绝对不允许重复,可选范围从0到15,SCSI主控制器通常占用id7,可以用在设备上的ID号共有15个。总线终结器能告诉SCSI主控制器整条总线在何处终结,并发出一个反射信号给控制器,必须在两个物理终端作一个终结信号才能使用SCSI总线。常见的错误是把终结设置在ID号最高或最低的地方,而不是设置在物理终端的SCSI设备上。SCSI设备总是以链形来连接的,按顺序就能分辨出哪一个是终结设备。

终结的方式有三种:自终结设备、物理总线终结器和自终结电缆。大多数新型SCSI设备都有自终结跳线,只要把非终结设备的自终结跳线设置成OFF即可避免冲突问题;物理总线终结器是一种硬件接头,又分为主动型和被动型两种,主动型使用电压调整器来进行操作,被动型利用总线上的能源信号来操作,被动型比主动型更为精确;自终结电缆可以代替物理总线终结器,也是一种硬件,它的价格非常昂贵,常用于两个主机连接同一个物理设备,如:两个服务器存取同一个物理SCSI硬盘。通过检查SCSIID和总线终结器,我们可以找出大多数冲突现象的解决方法,这是SCSI设备用户重视的一点。

展开阅读全文

网卡的总线类型

全文共 2062 字

+ 加入清单

网卡总线类型

网卡目前主要有ISA、PCI、PCI-X、PCMCIA、USB和EXPRESS CARD等几种总线类型。

(1)ISA总线接口 这是早期网卡使用的一种总线接口,目前在市面上基本上看不到有ISA总线类型的网卡。ISA网卡采用程序请求I/O方式与CPU进行通信,这种方式的网络传输速率低,CPU资源占用大。这类网卡已不能满足现在不断增长的网络应用需求。建议选购时不必考虑此类网卡。 (2)PCI总线接口 PCI总线的英文全称为Peripheral Component Interconnect。即外部设备互联总线,是于1993年推出的PC局部总线标准。PCI总线的主要特点是传输速度高,目前可实现66M的工作频率,在64位总线宽度下可达到突发(Burst)传输速率533MB/s。可以满足大吞吐量的外设的需求。采用 这种总线类型的网卡在当前的台式机上相当普遍,也是目前最主流的一种网卡接口类型。因为它的I/O速度远比ISA总线型的网卡快(ISA最高仅为33MB/s,而目前的PCI 2.2标准32位的PCI接口数据传输速度最高可达133MB/s),所以在这种总线技术出现后很快就替代了原来老式的ISA总线。它通过网卡所带的两个指示灯颜色初步判断网卡的工作状态。目前能在市面上买到的网卡基本上是这种总线类型的网卡,一般的PC机和服务器中也提供了好几个PCI总线插槽,基本上可以满足常见PCI适配器(包括显示卡、声卡等,不同的产品利用金手指的数量是不同的)安装。 (3)PCI-X总线接口 这是目前服务器网卡经常采用的总线接口,它与原来的PCI相比在I/O速度方面提高了一倍,比PCI接口具有更快的数据传输速度(2.0版本最高可达到266MB/s的传输速率)。PCI-X总线接口的网卡一般32位总线宽度,也有的是用64位数据宽度的。

(4)PCMCIA总线接口 采用这种总线类型的网卡是笔记本电脑专用的,它受笔记本电脑的空间限制,体积远不可能像PCI接口网卡那么大。随着笔记本电脑的日益普及,这种总线类型的网卡目前在市面上较为常见。PCMCIA总线分为两类,一类为16位的PCMCIA,另一类为32位的CardBus。 CardBus是一种用于笔记本计算机的新的高性能PC卡总线接口标准,就像广泛地应用在台式计算机中的PCI总线一样。该总线标准与原来的PC卡标准相比,具有以下的优势:第一,32位数据传输和33MHz操作。CardBus快速以太网PC卡的最大吞吐量接近90 Mbps,而16位快速以太网PC卡仅能达到20-30 Mbps。第二,总线自主。使PC卡可以独立于主CPU,与计算机内存间直接交换数据,这样CPU就可以处理其它的任务。第三,3.3V供电,低功耗。提高了电池的寿命,降低了计算机内部的热扩散,增强了系统的可靠性。第四,后向兼容16位的PC卡。老式以太网和Modem设备的PC卡仍然可以插在CardBus插槽上使用。 (5)USB总线接口 作为一种新型的总线技术,USB(Universal Serial Bus,通用串行总线)已经被广泛应用于鼠标、键盘、打印机、扫描仪、Modem、音箱等各种设备。USB总线的网卡一般是外置式的,具有不占用计算机扩展槽和热插拔的优点,因而安装更为方便。这类网卡主要是为了满足没有内置网卡的笔记本电脑用户。USB总线分为USB2.0和USB1.1标准。USB1.1标准的传输速率的理论值是12Mbps,而USB2.0标准的传输速率可以高达480Mbps。 (6)EXPRESS CARD总线接口 1989年由200多家公司确立了PCMCIA(Personal Computer Memory Card International Association)标准。Express Card这个标准是由许多PCMCIA 的成员公司一同开发,其中包括了技术的领先者,系统开发商及卡的生产商。Express Card 不仅体积细小,而且传输速度更快,适合于移动或者桌面平台系统,使用USB 2.0以及PCI Express通道。这种新一代的卡具有两种规格,但都小于目前CARDBUS 卡规格,其中最小的卡是ExpressCard/34 标准,它仅有目前PC卡的一半,这种尺寸更适合于移动设备的接入,比如PDA等。第二种是ExpressCard/54 标准,这种标准用来支持那些需要更大尺寸卡的技术,其中这些应用包括了SMAERCARD 读卡器,CF卡读卡器,以及1.8英寸的硬盘驱动器。不过所有ExprssCard 标准都是5mm厚,但该标准同时允许卡的开发商开发属于它们自己的“扩展”标准。由于卡同时支持USB2.0 规格和PCI Express 界面规格,因此卡的生产商可以任意选用一种总线来支持它们的应用程序。要么是性能强大的PCI Express 界面规格,要么是应用广泛的USB 2.0 规格。这种卡同时可以兼容以前的接口和总线,无需另外再增加芯片组来对其进行修正。

展开阅读全文

什么是CPU的缓存/前端总线FSB频率

全文共 1774 字

+ 加入清单

什么是CPU的缓存/前端总线(FSB)频率

缓存 缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。

L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。

L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。

L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显著的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。

其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。

但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。

前端总线(FSB)频率

前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据带宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。

外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。

其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组 Intel 7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到4.3GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMD Opteron处理器就不知道从何谈起了。

展开阅读全文

什么是主板VL局部总线/ATX电源/ATX板型

全文共 295 字

+ 加入清单

什么是主板VL局部总线/ATX电源/ATX板型

VL局部总线:(Local Bus:局部总线)是VESA组织设计的一种开放性总线结构。它的宽度是32位,工作频率是33MHz,数据传输率为132MB/S。但是它的定义标准不严格,兼容性不好,并且带负载能力相对来说比较低,所以已经被PCI代替。

ATX电源: ATX电源是ATX主板配套的电源,为此对它增加了一些新作用;一是增加了在关机状态下能提供一组微电流(5V/100MA)供电。二是增加有3.3V低电压输出。

ATX板型:它的布局是"横"板设计,就象把Baby-AT板型放倒了过来,这样做增加了主板引出端口的空间,使主板可以集成更多的扩展功能。

展开阅读全文

什么是IrDa/I2C管理总线

全文共 333 字

+ 加入清单

什么是IrDa/I2C管理总线

IrDa:(Infrared Data:红外数据传输)是利用红外线方式实现电脑之间的数据传输。它也需要一个界面,即红外线接口。它可以省去电缆连线。

I2C管理总线(Intel-Integrated Circuit bus)I2C总线是一种由飞利浦公司开发的串行总线,产生于80年代,最初为音频和视频设备开发,现主要在服务器管理中使用。是两条串行的总线,用于连接微控制器及其外围设备。I2C总线包括一个两端接口,通过一个带有缓冲区的接口,数据可以被I2C发送或接受。利用I2C硬件总线技术可以对服务器的所有部件进行集中管理,可随时监控风扇、内存、硬盘、网络、系统温度等多个参数,增加了系统的安全性,方便了管理。主要的优点是其简单性和有效性。

展开阅读全文

什么是主板POST/PCI总线/SCSI

全文共 365 字

+ 加入清单

什么是主板Post/PCI总线/SCSI

POST:POST(Power-On-Self-Test:上电自检)是BIOS功能的一个主要部分。它负责完成对CPU、主板、内存、软硬盘子系统、显示子系统(包括显示缓存)、串并行接口、键盘、CD-ROM光驱等的检测。

PCI总线:PCI(Peripheral Component Interconnect:外部设备互连)是由SIG集团推出的总线结构。它具有132 MB/S的数据传输率及很强的带负载能力,可适用于多种硬件平台,同时兼容ISA、EISA总线。

SCSI:SCSI(Small Computer System Interface:小型电脑系统界面)它可以驱动至少6个(SCSI-3标准扩充后达32个)外部设备;并且它的数据传输率可达到40Mbps、SCSI-3更可高达80Mbps。

展开阅读全文

多串口卡的总线接口

全文共 465 字

+ 加入清单

多串口卡的总线接口

多用户卡主要有ISA、PCI、USB等几种总线接口。 ISA总线接口 这是早期多用户卡和网卡、显卡等设备使用的一种总线接口, ISA总线多用户卡采用程序请求I/O方式与CPU进行通信,这种方式的网络传输速率低,CPU资源占用较大。 PCI总线接口 PCI总线的英文全称为Peripheral Component Interconnect。即外部设备互联总线,是于1993年推出的PC局部总线标准。PCI总线的主要特点是传输速度高,目前可实现66M的工作频率,在64位总线宽度下可达到突发(Burst)传输速率533MB/s。可以满足大吞吐量的外设的需求。现在主流的多用户卡多为PCI总线。USB总线接口 作为一种新型的总线技术,USB(Universal Serial Bus,通用串行总线)已经被广泛应用于鼠标、键盘、打印机、扫描仪、Modem、音箱等各种设备。USB总线分为USB2.0和USB1.1标准。USB1.1标准的传输速率的理论值是12Mbps,而USB2.0标准的传输速率可以高达480Mbps。

展开阅读全文

LIN总线的汽车HID前照灯自动调光系统

全文共 1944 字

+ 加入清单

LIN总线汽车hid前照灯自动调光系统

一、引言

HID是高压气体放电灯(High Intensity Discharge)的缩写,也可称为重金属灯或者氙气大灯。与传统卤素灯泡相比,HID有亮度高、寿命长、省电等优点。

正是由于HID具有高亮度的特点,如果使用时照射高度调节不当,在会车时将会对迎面来车的司机造成强烈的眩目,产生安全隐患。为了规范HID前照灯的市场,联合国欧洲经济委员会(UnitedNationsEconomicCommissionforEurope)在ECE-R48条款中明确规定:装备HID前照灯的车辆必须配备能够全自动调节其照射高度的系统,也可称之为前照灯水平自动调光系统。该系统工作时,会根据车辆负载的变化自动调整HID前灯的投射俯仰角度,确保其投射高度在合适的范围内,既达到良好的照明效果,又不会对迎面车辆的司机造成眩目。

二、系统总体方案设计

如图1所示,系统可分为三个部分,即车身高度传感器、中央控制单元和驱动执行单元。系统运作情况如下:该系统的主MCU(MC68HC908GZ60)采集车身前后轴高度传感器的信号,经运算后发出控制信号分别给左右前照灯的水平调光步进电机,指示电机转动到指定位置,完成自动调光。

图1前照灯自动调光系统方案设计

三、系统硬件设计

1.车身高度传感器

该系统的主要原理是利用测定车内两个基准点(约前、后轴位置)到地面的距离差得出车辆的倾斜角度信号,从而进行水平调节。可选择光电编码式的车高传感器,把车身高度的变化(悬架变形量的变化)变换成传感器轴的旋转,将检测出的旋转角度信号转变为电压信号输入MCU。实验中,车身高度传感器在车左前轮和左后轮内侧各装一个。

2.中央控制单元

系统中央控制单元采用飞思卡尔(Freescale)公司生产的MC68HC908GZ60芯片为主MCU,配合其他必要元件组成控制单元电路。该芯片主要特性有:8位HC08型CPU,开发资源丰富,兼容性好;片载60KBFlashEEPROM,2KBRAM;24通道A/D转换模块,10位精度。

此外,选择飞思卡尔MC33399芯片与核心MCU通过SCI口相连,作为LIN总线收发器。该芯片最多可以驱动16个节点。

之所以选择LIN总线,是因为它已经是车用总线中较为普及的一种,它的优点是芯片价格低廉,性价比高。LIN总线信号传输速率可达19.2kbps,一般用在对汽车安全性要求不高的控制场合,例如电控门窗、车灯开关控制等。

LIN总线主节点电路原理图如图2所示。

图2LIN总线主节点电路原理图

3.驱动执行单元

驱动执行单元,主要是通过获取LIN总线上的信号,来控制步进电机转动,从而带动前照灯反光板沿垂直方向转动,完成水平调光。

此处选择了美国AMI半导体公司的AMIS-30623步进电机控制芯片。该芯片属高集成度芯片,内建了电源模块、控制器、LIN总线收发器和步进电机驱动。其主要特性有:最高峰值电流输出达800mA;提供最高达16细分数的步进电机驱动;内建加减速算法;完全兼容LIN1.3规范。

由于AMIS-30623芯片本身不可重新编程,一切操作均通过LIN总线调用其内部函数来完成,所以使用起来十分简便。内建的加减速算法对于控制步进电机变速运动非常有效。

LIN总线从节点电路原理图如图3所示。

图3LIN总线从节点电路原理图

四、系统软件设计

软件方面,采用1ms定时中断采集,每次中断到来时采取一组传感器输出的电压值。经过预判断后,将有效数据保留,带入公式计算,得出需要步进电机转动到的目标位置。通过LIN总线向相应的AMIS-30623芯片发送信号,控制步进电机按加速—匀速—减速的方式平稳运动到相应位置。该程序在FreescaleCodeWarrior5.7.0环境下编译通过。主程序流程如图4所示。

图4系统主程序流程图

五、实验结果

为了验证该系统的动态调光性能,在实验室环境下搭建了一个能够模拟车身俯仰运动的实验平台。实验过程中,控制平台本身按一定幅度作俯仰运动,测得调光系统阶跃响应时间约420ms,调整时间小于1s,稳态误差约0.035°,满足了动态自动调光的基本要求。

六、结语

该系统实现了对汽车前照灯自动调光的基本功能,为进一步开发更为复杂的自适应前照灯系统(Adaptive Front lighting System)奠定了基础。

此外,该系统实际上是一套基于LIN总线和单片机的小功率步进电机控制系统。LIN总线作为一种成本低廉、有较强容错性的局域总线,在汽车和工业控制等环境中正得到越来越广泛地应用。该系统易开发、易维护、成本低廉,可最多添加至16个子节点,增减节点前后软件方面完全兼容,无需重新编程。因此,该设计方案在小功率步进电机控制领域具有一定的推广价值。

展开阅读全文

基于CAN总线的自动离合器控制器设计

全文共 2628 字

+ 加入清单

随着社会的发展, 人们对汽车的舒适性和安全性要求越来越高, 而手动档汽车因其繁重的选换档及离合器操作增加了驾驶难度。对于驾驶新手而言, 又会产生坡道起步易熄火、油耗大、离合器磨损严重等问题[ 1]。自动档汽车虽然驾驶操作简单, 但其造价高,开发难度大。

本文设计的电控自动离合器ACS(AutomaTIc Clutch System) 是在手动变速箱基础上安装电控系统,取消离合踏板,实现自动离合。ACS 的优势十分明显:与手动挡相比,其驾驶操控更为简单, 具有加速快、驾驶舒适的特点; 与自动变速器汽车相比,ACS 具有造价便宜、维修方便、经济、省油。

试验表明,所设计的自动离合器控制器在功能上满足实际应用的需要,can通信模块能够准确无误地收发数据,可靠性高。

1 系统功能

ACS 将现代电子控制技术用于控制干式摩擦离合器, 模拟优秀驾驶员的操纵动作和感觉, 实现最佳的离合器结合规律, 其实质是为汽车驾驶员配备一个操纵离合器的机械人, 实现自动离合器的功能。本文设计的ACS 控制器主要实现了如下几大功能。

(1) 换档离合: 控制器接收到换档信号后, 离合器迅速自动分离, 换档到位后离合器自动结合, 结合规律由电控单元依据汽车行驶工况确定。

(2) 坡道起步: 驾驶员踩制动踏板, 启动发动机, 将换档手柄置于一档或倒档, 松开手制动器, 解除制动后不踩油门踏板汽车能够自动慢速行驶, 起步平稳, 冲击小,不熄火。

(3) 熄火保护: 汽车行驶过程中, 车速和发动机转速低于设定值后离合器自动分离, 车速和发动机转速高于设定值后离合器再自动结合。

(4)CAN 通信:ACS 控制器通过CAN总线接口与发动机控制器实现数据通信, 为离合器与发动机的协调控制提供数据支持。

2 系统的硬件设计

2.1 控制器组成

自动离合器控制器原理框图如图1 所示。本系统的微处理器选用英飞凌高性能的8 位微处理器XC878CM, 工作频率最高可达27 MHz, 其片内硬件资源十分丰富, 片内集成了MulTICAN 控制器、捕获/比较单元6(CCU6) 、高性能ADC 模块等。XC878CM 出色的性能完全满足本系统的设计需要。本系统的硬件部分主要包括电源模块、数据采集模块、CAN 通信模块、执行电机驱动模块等。

图1 自动离合器控制器原理图

(1) 电源模块整车低压控制系统通过12 V 电池供电,8 位MCU 采用5 V 供电。所以本系统需要采用电源芯片进行电压的转换和隔离。本系统选用英飞凌电源芯片TLE4290 , 该芯片可提供稳定的5 V 电压, 误差在2%以内, 输入电压最高可达42 V。经测试, 其工作可靠, 满足系统要求。

(2)CAN 通信模块CAN 通信模块使用XC878CM 片内MulTICAN 控制器和英飞凌高速CAN 收发器IFX1050G作为CAN 通信的硬件组成。CAN 模块负责离合器控制器和发动机控制器之间的数据交换和共享, 为发动机与离合器的协调控制提供数据通信支持。

(3) 执行电机驱动模块本系统使用的执行电机为额定电压为12V 的直流电机。单片机使用一个IO 口控制执行电机的转动方向, 一路PWM 输出控制电机的转速。

PWM 波由单片机内含的CCU6 模块配置为比较模式产生。单片机通过英飞凌电机驱动芯片BTS7810K 实现对执行电机的控制。

(4) 数据采集模块本系统采集的数据主要有三种类型: 开关量、模拟量、频率量。开关量主要是指点火信号和驾驶员的挂档信号等, 通过单片机的I/O 口采集。

XC878CM 单片机片内集成一个带有8 路模拟输入选择的高性能10 bit 模数转换器, 可方便地用于模拟量的采集。XC878CM 内含的CCU6 模块可配置工作在捕获模式, 用于采集车速传感器发送来的频率量信号。由于汽车环境干扰较大, 信号采集电路需添加滤波、电压调理等电路。此外, 对于频率量采集, 由于接收的是脉冲信号, 还需要使用施密特触发器进行脉冲信号的整形。

2.2 电机驱动电路设计

离合器执行机构采用12 V 直流电机驱动, 单片机采用脉宽调制PWM 技术控制电机转速。PWM 调速方法以控制简单、动态响应效果好、调速范围宽等优点成为应用十分广泛的调速方法。

对直流电机转动方向的控制需要通过搭建H桥电路实现, 由于自行搭建的H 桥电路及栅极驱动电路往往在可靠性方面很难保证。因此,本文选择了集成的电机驱动芯片BTS7810K 来驱动离合器执行电机。芯片BTS7810K 是一款全桥电机驱动芯片, 其内部集成了H 桥电机驱动电路及栅极驱动电路, 其工作频率高达1 kHz 以上,可方便可靠地实现对直流电机的控制。BTS7810K 正常工作模式的输入输出特性如表1 所示。

表1 BTS7810K 输入输出特性

电机驱动电路如图2 所示, 单片机使用一个I/O 口输出控制电机转向, 一路PWM 输出控制电机转速。两路控制信号通过一个与门和两个非门组成的接口电路连接到驱动芯片的输入端IH1、IH2。这样做是为了保证两个输入端不同时为高电平, 防止桥臂直通问题的出现,提高系统的安全性和可靠性。

图2 电机驱动电路

2.3 CAN 节点接口设计

CAN 总线是德国Bosch 公司20 世纪90 年代初为解决现代汽车中众多控制与测试仪器之间的信息交换而开发的一种串行通信协议网络[ 3]。它具有传输速率高、可靠性强和实时性好等特点, 正好符合ACS 与发动机协调控制的通信需要。对发动机和离合器进行综合控制,充分利用发动机电子控制系统控制发动机转速及时、准确的特点, 使之与离合器相互协调配合, 将有利于离合器取得更好的控制效果, 进而提高换挡品质。

CAN 节点硬件电路主要包括: 带有CAN 控制器的微控制器和用于数据收发的CAN 收发器。本文选用的微处理器XC878CM 带有片内的CAN 控制器, 主要负责CAN 的初始化和数据处理。MulTICAN 模块集成了除收发器外CAN 总线控制器的所有功能。此外,MultiCAN 还具有先进的验收滤波功能、先进的数据管理、先进的中断管理等优良特性。CAN 的收发器种类很多, 本设计中选用英飞凌公司的高速收发器IFX1050G。CAN 节点的接口电路图如图3 所示。

图3 CAN 节点的接口电路图

3 软件设计

电控单元ECU 的控制软件主要由离合器控制程序和CAN 总线通信程序组成。

展开阅读全文

蓝牙适配器的总线类型

全文共 323 字

+ 加入清单

蓝牙适配器总线类型总线类型可分为ISA总线、PCI总线和USB总线。ISA总线以16位传送数据,标称速度能够达到10M。PCI总线以32位传送数据,速度较快。目前市面上大多是10M和100M的PCI总线。随着USB接口的逐渐普及,现有的蓝牙适配器基本上都为USB总线的。

USB总线即Universal Serial Bus,通用串行总线,是IBM、Intel、Microsoft、Compaq、NEC等几大世界著名厂商联合制订的一种新型串行接口,它已成为电脑与外调设备(如:键盘,磁带机,打印机,可写入光盘机等)之间标准的接口。该接口不但负载能力好,而且易用性也好,具有“即插即用”的功能,最多可串接127个外设,支持即时声音播放及影像压缩。

展开阅读全文

工业串行总线的RS的485系统的维护

全文共 672 字

+ 加入清单

RS-485是一种低成本、易操作的通信系统,但是稳定性弱同时相互牵制性强,通常有一个节点出现故障会导致系统整体或局部的瘫痪,而且又难以判断。故向读者介绍一些维护RS-485的常用方法。

1.若出现系统完全瘫痪,大多因为某节点芯片的VA、VB对电源击穿,使用万用表测VA、VB间差模电压为零,而对地的共模电压大于3V,此时可通过测共模电压大小来排查,共模电压越大说明离故障点越近,反之越远;

2.集中供电的RS-485系统在上电时常常出现部分节点不正常,但每次又不完全一样。这是由于对RS-485的收发控制端TC设计不合理,造成微系统上电时节点收发状态混乱从而导致总线堵塞。改进的方法是将各微系统加装电源开关然后分别上电;

3.总线连续几个节点不能正常工作。一般是由其中的一个节点故障导致的。一个节点故障会导致邻近的2~3个节点(一般为后续)无法通信,因此将其逐一与总线脱离,如某节点脱离后总线能恢复正常,说明该节点故障;

4.系统基本正常但偶尔会出现通信失败。一般是由于网络施工不合理导致系统可靠性处于临界状态,最好改变走线或增加中继模块。应急方法之一是将出现失败的节点更换成性能更优异的芯片;

5.笔者曾遇到MCU故障导致TC端处于长发状态而将总线拉死一片的现象,故提醒读者不要忘记对TC端的检查。尽管RS-485规定差模电压大于200mV即能正常工作。但实际测量:一个运行良好的系统其差模电压一般在1.2V左右(因网络分布、速率的差异有可能使差模电压在0.8~1.5V范围内)。

虽然RS-485总线存在一些缺点,但只要处理好细节,性能还是比较稳定的。

展开阅读全文

QPI总线是什么

全文共 1425 字

+ 加入清单

Intel的QuickPath Interconnect技术缩写为QPI,译为快速通道互联。事实上它的官方名字叫做CSI,Common System Interface公共系统界面,用来实现芯片之间的直接互联,而不是在通过FSB连接到北桥,矛头直指AMD的HT总线。无论是速度、带宽、每个针脚的带宽、功耗等一切规格都要超越HT总线。

QPI示意图

1、QPI---QuickPath Interconnect 用于替代FSB

2、带宽更大---数据传送速度是FSB 1600的2倍—25.6GB/S

3、效率更高---支持多条系统总线连接

QPI的技术特点

带宽更大

Intel的QuickPath Interconnect技术缩写为QPI,译为快速通道互联。事实上它的官方名字叫做CSI,Common System Interface公共系统界面,用来实现芯片之间的直接互联,而不是在通过FSB连接到北桥,矛头直指AMD的HT总线。无论是速度、带宽、每个针脚的带宽、功耗等一切规格都要超越HT总线。

QPI是一种基于包传输的串行式高速点对点连接协议,采用差分信号与专门的时钟进行传输。在延迟方面,QPI与 FSB几乎相同,却可以提升更高的访问带宽。一组QPI具有具有20条数据传输线,以及发送(TX)和接收方(RX)的时钟信号。

一个QPI数据包包含80位,需要两个时钟周期或四次传输完成整个数据包的传送(QPI的时钟信号速率是传输速率的一半)。在每次传输的20bit数据中,有16bit是真实有效的数据,其余四位用于循环冗余校验,以提高系统的可靠性。由于QPI是双向的,在发送的同时也可以接收另一端传输来的数据,这样,每个QPI总线总带宽=每秒传输次数(即QPI频率)×每次传输的有效数据(即16bit/8=2Byte)×双向。所以QPI频率为4.8GT/s的总带宽=4.8GT/s×2Byte×2=19.2GB/s,QPI频率为6.4GT/s的总带宽=6.4GT/s×2Byte×2=25.6GB/s。(bit-位,Byte-字节,1Byte=8bit)

效率更高

此外,QPI另一个亮点就是支持多条系统总线连接,Intel称之为multi-FSB。系统总线将会被分成多条连接,并且频率不再是单一固定的,也无须如以前那样还要再经过FSB进行连接。根据系统各个子系统对数据吞吐量的需求,每条系统总线连接的速度也可不同,这种特性无疑要比AMD目前的Hypertransport总线更具弹性。

QPI对AMD和NVIDIA的影响

做为行业领导性厂商,每次Intel平台的进步都是有人欢喜有人愁。比如,AMD面临着该如何追赶Intel处理器革新速度的问题,如果未来AMD无法跟上英特尔的步伐,其市场份额肯定将变得越来越小。当然,AMD有其过硬的显卡技术支撑,这正是目前Intel所欠缺的。

AMD CPU如真能将其GPU整合,带来的市场影响力也是巨大的。

NVIDIA的处境,Intel的目标是CPU整合GPU,而NVIDIA的目标则是GPU整合CPU,虽然NVIDIA自身对其信心满满,从目前的竞争形势来看,一项是靠显卡技术、芯片组维系的NVIDIA,面对Intel的打压,必须在Intel平台推广SLI,面对Intel和AMD的CPU整合GPU方案,对NVIDIA的低端、中低端显卡市场又非常大的影响。

QPI = Quality Performance Index﹐ 品质指标。

展开阅读全文

总线是什么

全文共 756 字

+ 加入清单

总线(Bus)是计算机各种功能部件之间传送信息的公共通信干线,它是由导线组成的传输线束,按照计算机所传输的信息种类,计算机的总线可以划分为数据总线、地址总线和控制总线,分别用来传输数据、数据地址和控制信号。总线是一种内部结构,它是cpu、内存、输入、输出设备传递信息的公用通道,主机的各个部件通过总线相连接,外部设备通过相应的接口电路再与总线相连接,从而形成了计算机硬件系统。在计算机系统中,各个部件之间传送信息的公共通路叫总线,微型计算机是以总线结构来连接各个功能部件的。

当总线空闲(其他器件都以高阻态形式连接在总线上)且一个器件要与目的器件通信时,发起通信的器件驱动总线,发出地址和数据。其他以高阻态形式连接在总线上的器件如果收到(或能够收到)与自己相符的地址信息后,即接收总线上的数据。发送器件完成通信,将总线让出(输出变为高阻态)。

总线按功能和规范可分为三大类型:

(1) 片总线(Chip Bus, C-Bus)

三类总线在微机系统中的地位和关系,又称元件级总线,是把各种不同的芯片连接在一起构成特定功能模块(如CPU模块)的信息传输通路。

(2) 内总线(Internal Bus, I-Bus)

又称系统总线或板级总线,是微机系统中各插件(模块)之间的信息传输通路。例如CPU模块和存储器模块或I/O接口模块之间的传输通路。

(3) 外总线(External Bus, E-Bus)

又称通信总线,是微机系统之间或微机系统与其他系统(仪器、仪表、控制装置等)之间信息传输的通路,如EIA RS-232C、IEEE-488等。

其中的系统总线,即通常意义上所说的总线,一般又含有三种不同功能的总线,即数据总线DB(Data Bus)、地址总线AB(Address Bus)和控制总线CB(Control Bus)。

展开阅读全文

总线技术是什么

全文共 1096 字

+ 加入清单

总线,英文叫作“BUS”,即我们中文的“公共车”,这是非常形象的比如,公共车走的路线是一定的,我们任何人都可以坐公共车去该条公共车路线的任意一个站点。如果把我们人比作是电子信号,这就是为什么英文叫它为“BUS”而不是“CAR”的真正用意。当然,从专业上来说,总线是一种描述电子信号传输线路的结构形式,是一类信号线的集合,是子系统间传输信息的公共通道。通过总线能使整个系统内各部件之间的信息进行传输、交换、共享和逻辑控制等功能。如在计算机系统中,它是CPU、内存、输入、输出设备传递信息的公用通道,主机的各个部件通过主机相连接,外部设备通过相应的接口电路再于总线相连接。

分类

总线分类的方式有很多,如被分为外部和内部总线、系统总线和非系统总线等等。

按功能分

最常见的是从功能上来对数据总线进行划分,可以分为地址总线(address bus)、数据总线(data bus)和控制总线(control bus)。在有的系统中,数据总线和地址总线可以在地址锁存器控制下被共享,也即复用。

地址总线是专门用来传送地址的。在设计过程中,见得最多的应该是从CPU地址总线来选用外部存储器的存储地址。地址总线的位数往往决定了存储器存储空间的大小,比如地址总线为16位,则其最大可存储空间为216(64KB)。

数据总线是用于传送数据信息,它又有单向传输和双向传输数据总线之分,双向传输数据总线通常采用双向三态形式的总线。数据总线的位数通常与微处理的字长相一致。例如Intel 8086微处理器字长16位,其数据总线宽度也是16位。在实际工作中,数据总线上传送的并不一定是完全意义上的数据。

控制总线是用于传送控制信号和时序信号。如有时微处理器对外部存储器进行操作时要先通过控制总线发出读/写信号、片选信号和读入中断响应信号等。控制总线一般是双向的,其传送方向由具体控制信号而定,其位数也要根据系统的实际控制需要而定。

按传输方式分

按照数据传输的方式划分,总线可以被分为串行总线和并行总线。从原理来看,并行传输方式其实优于串行传输方式,但其成本上会有所增加。通俗地讲,并行传输的通路犹如一条多车道公路,而串行传输则是只允许一辆汽车通过单线公路。目前常见的串行总线有SPI、I2C、USB、IEEE1394、RS232、CAN等,而并行总线相对来说种类要少,常见的如IEEE1284、ISA、PCI等。

按时钟信号方式分

按照时钟信号是否独立,可以分为同步总线和异步总线。同步总线的时钟信号独立于数据,也就是说要用一根单独的线来作为时钟信号线;而异步总线的时钟信号是从数据中提取出来的,通常利用数据信号的边沿来作为时钟同步信号。

展开阅读全文