0

浏览

3190

文章

28

篇1:基于可见光通信的无线网络 Li-Fi 即将推出

全文共 626 字

+ 加入清单

根据美国电气和电子工程师学会的报告,由哈拉尔德·哈斯领导的爱丁堡大学的一组科学家与剑桥、牛津、圣安德鲁斯和斯特拉斯克莱德大学合作完成了这个项目。在英国工程和自然研究委员会的赞助下,他们花费了580万英镑。

Li-Fi基于超平行可见光连接,可以增加光的颜色,从而产生长距离高振幅连接。可见光是电磁波谱的一部分,电磁波谱比无线电频谱大10,000倍,而且容量相对不受限制。科学家称,在某些情况下,这种无线网络可以补充或取代传统的基于无线电波的无线网络。另一个优点是,均匀分布的发光二极管发射器可以为整个建筑提供更稳定的区域性互联网连接。后来,它的发明者强调说,他不打算用Li-Wi与Wi-Fi竞争。

起初,该版本仅限于现有的发光二极管设备(发光二极管),因为发光二极管需要同时用作发射器和检测器。哈斯声称他已经发明了最好的发光二极管装置,这将使数据传输速度达到5 GB/s。哈斯解释说,用一个简单的透镜来延长距离,就有可能以1.1Gb/s的速度传输数据到10米,这只是开始,很快将增加到15 GB/s

与此同时,德国德累斯顿光子微系统研究所的另一组研究人员计划在11月的慕尼黑电子博览会上展示Li-Wi的“热点”。负责该研究团队的弗兰克·戴克(Frank Deicke)表示,该系统将使用红外光,并将致力于与消费行业相比的行业。Li-Fi已经发展成1Gb/s的点对点链接模式。

科学家希望在未来的25年里,每个家庭使用的灯泡都能提供手机连接,这只是其照明功能之一。

展开阅读全文

篇2:不可见光对人眼有伤害吗

全文共 692 字

+ 加入清单

光是人类生存必不可少的物质,简单分为可见光和不可见光,不可见光顾名思义就是人类肉眼看不到的光,其中包括我们熟悉的紫外线、红外线、远红外线等。不可见光人眼虽然无法感知,但是不可见光对人眼有伤害吗?这是一个必须要搞清楚的问题。

红外线在军事、人造卫星以及工业、卫生、科研等方面的应用日益广泛,因此红外线污染问题也随之产生。红外线是一种热辐射,对人体可造成高温伤害。较强的红外线可造成皮肤伤害,其情况与烫伤相似,最初是灼痛,然后是造成烧伤。红外线对眼的伤害有几种不同情况,波长为7500~13000埃的红外线对眼角膜的透过率较高,可造成眼底视网膜的伤害。尤其是11000埃附近的红外线,可使眼的前部介质(角膜晶体等)不受损害而直接造成眼底视网膜烧伤。波长19000埃以上的红外线,几乎全部被角膜吸收,会造成角膜烧伤(混浊、白斑)。波长大于14000埃的红外线的能量绝大部分被角膜和眼内液所吸收,透不到虹膜。只是13000埃以下的红外线才能透到虹膜,造成虹膜伤害。人眼如果长期暴露于红外线可能引起白内障。

紫外线比一般的可见光更具有穿透能力,所以科学家也常以紫外线来进行透视或鉴定的工作(就好像用X光来进行健康检查一样)。例如利用紫外线来检查金属上细微的裂缝、图画的真伪、食品安全,甚至于在探索太空时,紫外线都可以派上用场。紫外线对于生物有强大的杀伤力,因此人类就用它来对付这些难缠的细菌、病毒,我们也常利用阳光来帮我们杀菌。只不过要特别注意的是,这些杀菌设备一样会伤害人体,因此人眼过量接触紫外线是有伤害的。

综上所述,不可见光在使用不当的情况下对人眼是有伤害的。更多有意思的内容请大家继续关注。

展开阅读全文

篇3:led可见光通信缺点和优点 led可见光通信技术的现状与发展前景

全文共 4132 字

+ 加入清单

led照明具备多方面的优势,包括使用寿命长、安全可靠以及节能度高等,被普遍认为属于下一代主流照明技术。LED可见光无线通信系统是由LED照明与无线通信技术相互融合而构成的。

LED可见光无线通信的关键技术

LED可见光无线通信系统分为发射部分和接收部分。发射部分包括:信号输入和处理电路、LED可见光发射系统及其驱动电路。接收部分包括:接收光学系统、光电探测器、信号处理和输出电路。LED可见光无线通信主要包括以下几个方面的关键技术:

(1)光信号接收技术。在LED可见光通信系统中,存在着强烈的背景噪声及电路固有噪声的干扰,同时随着传输距离的加大,接收机接收到的信号十分微弱,常常会导致接收端信噪比小于1。为了精确地接收信号,需要有选择灵敏度高、响应速度快、噪声小的新型光电探测器;对所接收的信号进行前置处理,需采用高效的光滤波器,以抑制背景杂散光的干扰,对信号进行整形和去噪声。

(2)调制、编码以及解调技术。目前LED可见光无线通信系统大多采用强度调制(IM)的直接检测(DD)非相干系统,编码方式大多为二进制OOK(开关键控)编码。在实际光通信系统中,曼切斯特编码的性能优于OOK编码;此外,二进制OOK编码通过光学链路一次只能发送一个比特,但比特流的传送也可以以组的形式发送而不是一次一个,因此可采用光学组编码形式如脉冲位置调制(PPM)来达到更高的发送速率,但PPM系统在解码时对时钟同步性要求较高。

(3)码间干扰克服技术。在室内LED可见光通信系统中,LED光源具有较大的发射功率和宽广的辐射角,光线分布在整个房间。OOK编码器输出的矩形脉冲在传播过程中,由于LED单元灯分布位置不同及大气信道中存在的粒子散射导致了不同的传输延迟,光脉冲会在时间上延伸,每个符号的脉冲将加宽延伸到相邻符号的时间间隔内,产生码间干扰(ISI),导致系统性能恶化。通过可控的方式将ISI引入发射信号,采用抗扰动滤波器的相关电平编码,可降低ISI的影响。

(4)自动切换技术。在室外LED可见光无线通信系统中,当接收机(如汽车)从一个基站灯移动到另一个基站灯时,需要接收机能够自动切换。切换操作既要能够识别一个新基站又要将信令信号分派到新基站的信道上,设计者必须指定一个启动切换的最恰当的信号强度,选择恰当的切换时间以避免不必要的切换同时保证在由于信号太弱而通信中断之前完成必要的切换。为了保证这一点,基站在准备切换之前先对信号监视一段时间来进行信号能量的检测,这需由接收机辅助切换来完成。高速车辆只要几秒就驶过了一个基站灯的覆盖范围,切换中心很快会因为不停地有高速用户在不同基站灯间切换而不堪负荷,必须采用辅助切换技术减少切换中心介入切换的次数。

(5)无线信道传输技术。LED可见光无线通信系统的信号传输信道是随机信道,LED可见光的波长与大气中的尘灰、气体分子、大雾、雨滴的尺寸相近甚至更小,容易产生光的散射及吸收造成信号的严重衰减,阳光等背景光也会对系统的性能产生影响。要保证在随机信道下的正常工作,还必须对LED可见光传输信道作更深入的研究。目前在对室内信道进行分析时,都是采用Gfeller和Bapst的分析模型,将信道分成直射信道和墙壁反射信道两部分进行研究,但对背景光、散射等未作分析。因此建立恰当的室外传输模型和室内传输模型将有助于对系统展开深入的研究。

(6)信道复用技术。为了使多个终端能共享一条高速信道,须采用信道复用技术。在光通信领域,主要有光波分多址技术(OWDMA)、光时分多址技术(OTDMA)及光码分多址技术(OCDMA)。OCDMA是在光域内的一种扩频技术,可以动态分配带宽资源实现光信号的直接复用与交换,保密性好,抗干扰能力强,是具有广阔前景的多址技术。在LED可见光通信中可采用非相干OCDMA系统。

高速LED可见光无线通信系统还包括相应的电路结构优化设计、噪声抑制等技术。对于光通信系统来说,接收光场采用非相干检测。由于光电检测本质上是随机性的,在建立光探测器的输出模型时,电子释放时间、电子计数以及增益都是随机变量,这种过程是散弹噪声过程,接收机噪声通过获得散弹噪声极限的条件来克服。

led可见光通信缺点优点

一、优点

1、与光纤通信拥有同样的优点,高带宽,高速率。

2、基于LED的Li-Fi可达到10 Gb/s 的数据传输速率,可以改善Wi-fi7 Gb/s的数据传输速率上限。

3、Li-Fi技术带来了极高的安全性,因为可见光只能沿直线传播,因此只有处在光线传播直线上的人才有可能截获信息。

二、缺点

1、目前,这种设备目前还非常昂贵,无法普遍使用。

2、可见光Lifi通信只能在有光的情况下才能进行。

LED可见光无线通信的发展现状

LED可见光无线通信分室外通信和室内通信室外LED可见光无线通信技术目前主要应用在智能交通系统(ITS)中,香港大学G.Pang等人在1998年提出了利用LED交通指示灯为车辆传输语音广播信号,将语音信号通过OOK调制加至LED光源,实现了低速的无线LED可见光传输。日本KEIO大学Kitano等人在2003年提出了LED公路照明通信系统。Pang等人只对利用LED交通灯进行语音传输展开研究,Kitano等人只在LED公路照明通信系统中分析了在不同的接收方向角和视场角下信噪比的好坏,以及在一定误码率下信噪比和接收数据率的关系,认为LED可见光公路照明通信系统优于红外公路交通通信系统。

随着智能交通系统研究的深入,又出现了LED交通灯、汽车前后LED灯之间构成的交通灯至汽车和汽车前灯至汽车尾灯这两类可见光通信系统。Okada等人提出利用二维LED阵列组成发射机和二维图像传感器组成接收机,来构成并行LED可见光通信系统,并利用接收图案的空间频率分量特征对车辆进行定距。Wook和Komine等人对交通灯至汽车的LED可见光通信系统进行了分析后,认为在系统中采用二维图像传感器的接收机性能优于采用雪崩光敏二极管的接收机,并指出在一定条件下一盏交通灯最佳的LED单元灯数目是50&TImes;50。

室内LED可见光无线通信技术主要应用在室内无线宽带接入网中,日本KEIO大学的Tanaka等人和SONY计算机科学研究所的Haruyama在2000年提出了利用LED照明灯作为通信基站进行信息无线传输的室内通信系统。他们以Gfeller和Bapst的室内光传输信道为传输模型,将信道分为直接信道和反射信道两部分,并认为LED光源满足LamberTIan照射形式,且以强度调制直接检测(IM-DD)为光调制形式进行了建模仿真,获得了数据率、误码率以及接收功率等之间的关系,认为当传送数据率在10Mbps以下的系统是可行的,码间干扰(ISI)和多径效应是影响系统性能的两大因素。2001年,Tanaka等人在原来的基础上分别采用OOK-RZ调制方式与OFDM调制方式对系统进行了仿真,结果表明:当传送数据率在100Mbps以下时这两种调制技术都是可行的,当数据率大于100Mbps时,OFDM调制技术优于OOK-RZ调制技术。

2002年,Tanaka和Komine等人对LED可见光无线通信系统展开了具体分析,包括光源属性、信道模型、噪声模型、室内不同位置的信噪比分布等,求出了系统所需的LED单元灯的基本功率要求,并分别以OOK-RZ、OOK-NRZ、m-PPM调制方式进行仿真分析,得到了不同条件下的误码率大小。

同年,Komine等提出了一套结合电力线载波通信和LED可见光通信的数据传输系统,以SC-BPSK调制方式进行了系统仿真,结果表明:系统在数据率为1Mbps条件下是可行的。同年,Komine等研究了由墙壁反射引起的多径效应对LED可见光无线系统造成的影响,分别以OOK、2-PPM、4-PPM、8-PPM调制方式进行仿真,结果表明:8-PPM调制方式性能最佳。在数据率小于60Mbps,接收视场角小于50度的条件下,采用8-PPM调制方式可有效克服墙壁反射引起的多径效应。

2003年以后,Komine等继续对LED单元灯的设计布局、可见光传播信道(分直达信道和反射信道两部分)、室内人员走动导致的反射阴影、墙壁反射光,码间干扰对系统性能的影响等展开研究,并得出了不同接收视场角和不同数据传送率下各因素对系统性能的影响曲线。同年,NTT公司的Douseki提出了光能LED无线通信系统,LED光既作为数据传播的载体又作为能量源给系统供电。2005年,Komine等利用基于最小均方误差算法的自适应均衡技术来克服ISI,仿真表明在数据率为400Mbps以下时,FIR均衡器和DFE均衡器都可有效减少ISI的影响,当数据率高于400Mbps时,DFE均衡器更能有效克服码间干扰(ISI)。

LED可见光无线通信的发展趋势

LED可见光无线通信,现阶段主要应用在室内局域网和智能交通系统中,未来LED可见光无线通信技术将向以下几方面发展。

(1)室内LED可见光通信采用OFDM调制技术、CDMA接入技术及分组编码技术具有良好的发展前景,但采用OFDM调制技术时,幅度不断变化的OFDM信号工作在大信号幅度时可能会驱动功放进入非线性区产生失真。其次,目前LED灯分多芯片和单芯片两种,采用OFDM调制技术、CD-MA接入方式下采用何种芯片能达到更高的传信率和更少的误码率还有待研究。还有目前LED可见光无线通信系统研究主要是针对下行链路,系统上行链路研究还有待深入。

(2)由于LED照明基站灯安装在天花板、公路两旁或交通枢纽上,铺设新的通信电缆成本太高,如与电力线载波通信结合在一起,利用电力线来传输通信信号可大幅降低投资成本。在日本等发达国家已得到了广泛应用,南京联通也在一些小区里开通了10M带宽的电力线上网业务。LED可见光无线通信与电力线载波通信相结合将是未来的发展趋势。

(3)LED可见光无线通信技术可为城市车辆的移动导航及定位提供一种全新的方法。汽车照明基本上都采用LED灯,将光接收机安装在道路边或汽车上,组成汽车至交通控制中心(连接着道路边的光接收机)、路灯至汽车或汽车至汽车的通信链路,可为夜间行驶车辆进行导航、定位,并且能够让驾驶员即时知道各条道路的车辆流量,这也是LED可见光无线通信在智能交通系统中的发展方向。

展开阅读全文

篇4:不可见光的频率

全文共 694 字

+ 加入清单

人类的生存离不开光,根据人眼的视觉感知来分类的话,笼统上可以把光分为可见光与不可见光。不可见光顾名思义就是人类肉眼看不到的光,其中包括我们熟悉的紫外线、红外线、远红外线等。

不论是哪种光,一般都是用波长来区分的。波长是指波在一个振动周期内传播的距离。也就是沿着波的传播方向,相邻两个振动位相相差2π的点之间的距离。波长λ等于波速v和周期T的乘积,即λ=vT。同一频率的波在不同介质中以不同速度传播,所以波长也不同。接下来我们分别看一下常见的不可见光的波长是如何区分的。

红外线是太阳光线中众多不可见光线中的一种,由英国科学家赫歇尔于1800年发现,又称为红外热辐射,热作用强。他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。结果发现,位于红光外侧的那支温度计升温最快。因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。也可以当作传输之媒介。太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。红外线可分为三部分,即近红外线,波长为(0.75-1)~(2.5-3)μm之间;中红外线,波长为(2.5-3)~(25-40)μm之间;远红外线,波长为(25-40)~l500μm之间。

紫外光波长比可见光短,但比X射线长的电磁辐射。紫外光在电磁波谱中范围波长为100-400nm。这范围内开始于可见光的短波极限,而与X射线的长波波长相重叠。紫外光被划分为A射线、B射线和C射线(简称UVA、UVB和UVC),波长范围分别为400-315nm,315-280nm,280-190nm。

更多有意思的内容请大家继续关注。

展开阅读全文

篇5:如何滤掉可见光

全文共 563 字

+ 加入清单

我们都知道,可见光就是泛指人眼能感知的光。不论什么光,其实都是一种具有特定波长的电磁波。一般来说,可见光波长在400~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。

人眼对于不同波长的电磁波的敏感程度是不一样的,比如正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。也就是说,波长不同的电磁波,引起人眼的颜色感觉不同:波长770~622nm在人眼中感应的是红色;波长622~597nm在人眼中感应的是橙色;波长597~577nm在人眼中感应的是黄色;波长577~492nm在人眼中感应的是绿色;波长492~455nm在人眼中感应的是蓝、靛色;波长455~350nm在人眼中感应的是紫色。

根据这一特性,我们如果想过滤掉不需要的可见光,就可以通过一些工具来完成。现在最常见的工具就是滤光系统。滤光系统是指能改变入射光线光谱成份的装置或器材。如玻璃滤光镜片等。入射光线穿过滤光系统后,滤光系统有选择地吸收或限制一定光谱范围的光,并使未被吸收的那部分光顺利通过,而达到有选择性的感光效果和滤光目的。例如航空摄影时,为了消除大气对短波光的散射影响,通常采用黄色(或浅黄)滤光镜片,黄色滤光镜片能吸收限制短波段的兰光通过而达到消除和限制散射后短波光的干扰,使影像更清晰。

展开阅读全文

篇6:可见光的特性

全文共 486 字

+ 加入清单

光是一种能量,世界上万事万物的生存都离不了光。根据人的感知来分类,光可以简单分为可见光和不可见光,可见光是电磁波谱中人眼可以感知的部分,比如阳光,灯光等等;不可见光顾名思义就是人类肉眼看不到的光,其中包括我们熟悉的紫外线、红外线、远红外线等。

通过研究发现可见光有自己的特性

第一、互补色按一定的比例混合得到白光。如蓝光和黄光混合得到的是白光。同理,青光和红光混合得到的也是白光;

第二、颜色环上任何一种颜色都可以用其相邻两侧的两种单色光,甚至可以从次近邻的两种单色光混合复制出来。如黄光和红光混合得到橙光。较为典型的是红光和绿光混合成为黄光;

第三、如果在颜色环上选择三种独立的单色光。就可以按不同的比例混合成日常生活中可能出现的各种色调。这三种单色光称为三基色光。光学中的三基色为红、绿、蓝。这里应注意,颜料的三原色为青,品红,黄。但是,三原色的选择完全是任意的。

第四、当太阳光照射某物体时,某波长的光被物体吸取了,则物体显示的颜色(反射光)为该色光的补色。如太阳光照射到物体上,若物体吸取了波长为400~435nm的紫光,则物体呈现黄绿色。

更多有意思的知识请大家继续关注。

展开阅读全文

篇7:人眼可见光的波长范围

全文共 344 字

+ 加入清单

光是一种能量,也是万物之源,世界上万事万物的生存都离不了光,因此人们对于光的研究由来已久。根据人的感知来分类,光可以简单分为可见光和不可见光,可见光是电磁波谱中人眼可以感知的部分,比如阳光,灯光等等;不可见光顾名思义就是人类肉眼看不到的光,其中包括我们熟悉的紫外线、红外线、远红外线等。

光是由光子为基本粒子组成,具有粒子性与波动性,称为波粒二象性。光可以在真空、空气、水等透明的物质中传播。对于可见光的范围没有一个明确的界限,一般人的眼睛所能接受的光的波长在380~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。人们看到的光来自于宇宙中的发光物质(例如恒星)或借助于产生光的设备,包括白炽灯泡、荧光灯管、激光器、萤火虫等。

更多有意思的知识请大家继续关注。

展开阅读全文

篇8:不可见光会伤眼睛吗

全文共 751 字

+ 加入清单

我们都知道,一切生命都离不开光,从自然界的阳光到人类创造的其他各种形式的光,都在我们的生活中扮演者重要的角色。简单来说,光分为可见光和不可见光,不可见光顾名思义就是人类肉眼看不到的光,其中包括我们熟悉的紫外线、红外线、远红外线等。不可见光人眼虽然无法感知,但是不可见光会伤眼睛吗?

红外线是波长介乎微波与可见光之间的电磁波,波长在750纳米至1毫米之间,是波长比红光长的非可见光。覆盖室温下物体所发出的热辐射的波段。透过云雾能力比可见光强。在通讯、探测、医疗、军事等方面有广泛的用途。因此红外线污染问题也随之产生。红外线是一种热辐射,对人体可造成高温伤害。红外线对眼的伤害有几种不同情况,波长为7500~13000埃的红外线对眼角膜的透过率较高,可造成眼底视网膜的伤害。尤其是11000埃附近的红外线,可使眼的前部介质(角膜晶体等)不受损害而直接造成眼底视网膜烧伤。波长19000埃以上的红外线,几乎全部被角膜吸收,会造成角膜烧伤(混浊、白斑)。波长大于14000埃的红外线的能量绝大部分被角膜和眼内液所吸收,透不到虹膜。只是13000埃以下的红外线才能透到虹膜,造成虹膜伤害。人眼如果长期暴露于红外线可能引起白内障。

紫外线比一般的可见光更具有穿透能力,所以科学家也常以紫外线来进行透视或鉴定的工作(就好像用X光来进行健康检查一样)。例如利用紫外线来检查金属上细微的裂缝、图画的真伪、食品安全,甚至于在探索太空时,紫外线都可以派上用场。紫外线对于生物有强大的杀伤力,因此人类就用它来对付这些难缠的细菌、病毒,我们也常利用阳光来帮我们杀菌。只不过要特别注意的是,这些杀菌设备一样会伤害人体,因此人眼过量接触紫外线是有伤害的。

综上所述,不可见光在使用不当的情况下会伤害到人眼。更多有意思的内容请大家继续关注。

展开阅读全文

篇9:可见光和单色光的区别

全文共 505 字

+ 加入清单

一般的光源是由不同波长的单色光所混合而成的复色光,所谓的“单色光”是指白光或太阳光经三棱镜折射所分离出光谱色光--红、橙、黄、绿、蓝、靛、紫等七个颜色,因为这种被分解的色光,即使再一次通过三棱镜也不会再分解为其他的色光。这种不能再分解的色光叫做单色光,而由“单色光”所混合的光称为“复色光”。

我们都知道,可见光就是泛指人眼能感知的光。不论什么光,其实都是一种具有特定波长的电磁波。一般来说,可见光波长在400~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。

人眼对于不同波长的电磁波的敏感程度是不一样的,比如正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。也就是说,波长不同的电磁波,引起人眼的颜色感觉不同:波长770~622nm在人眼中感应的是红色;波长622~597nm在人眼中感应的是橙色;波长597~577nm在人眼中感应的是黄色;波长577~492nm在人眼中感应的是绿色;波长492~455nm在人眼中感应的是蓝、靛色;波长455~350nm在人眼中感应的是紫色。

由此可见,可见光包括各种单色光。更多有意思的知识请大家继续关注。

展开阅读全文

篇10:玻璃可见光反射率

全文共 409 字

+ 加入清单

当光线入射玻璃时,表现有反射、吸收和透射三种性质。光线透过玻璃的性质,称为“透射”,以透光率表示。光线被玻璃阻挡,按一定角度反射出来,称为“反射”,以反射率表示。光线通过玻璃后,一部分光能量被损失,称为“吸收”,以吸收率表示。

玻璃的反射率会受到玻璃厚度、玻璃颜色、玻璃镀膜、光线照射的角度等多方面的影响。反射率随入射角的增加而增大,但入射角小于40度时反射率随入射角的变化不明显,而当入射角大于70。时反射率随入射角的增加而急剧增加。另外,一般颜色越深时,其透明系数越小,光会被吸收一部分,此外玻璃的透射损失随玻璃的厚度呈指数下降,可见厚度越小透光损失越小。生活中,一般来说普通5mm无色玻璃(含车玻)的可见光反射率在8~10%左右。85~86%透过、8~10%反射、5~7%吸收。反射率要低于8%就得镀减反射膜了。也就是说普通玻璃一般每个面的反射率是4.2%,加起来就是8.4%左右。

更多有意思的知识请大家继续关注。

展开阅读全文

篇11:可见光属于电磁波吗

全文共 549 字

+ 加入清单

世界上万事万物的生存都离不了光,因此人们对于光的研究由来已久。根据人的感知来分类,光可以简单分为可见光和不可见光,可见光是电磁波谱中人眼可以感知的部分,比如阳光,灯光等等;不可见光顾名思义就是人类肉眼看不到的光,其中包括我们熟悉的紫外线、红外线、远红外线等。

光是能量的一种传播方式,正在发光的物体叫光源,“正在”这个条件必须具备,光源可以是天然的或人造的。物理学上指能发出一定波长范围的电磁波(包括可见光与紫外线、红外线、X射线等不可见光)的物体。光源主要可以分为三类:第一类是热效应产生的光。太阳光就是很好的例子,此外蜡烛等物品也都一样,此类光随着温度的变化会改变颜色;第二类是原子跃迁发光。荧光灯灯管内壁涂抹的荧光物质被电磁波能量激发而产生光。此外霓虹灯的原理也是一样。原子发光具有独自的特征谱线。科学家经常利用这个原理鉴别元素种类。第三类是物质内部带电粒子加速运动时所产生的光。譬如,同步加速器(synchrotron)工作时发出的同步辐射光,同时携带有强大的能量。另外,原子炉(核反应堆)发出的淡蓝色微光(切伦科夫辐射)也属于这种。

由此可见,只要是光线都是一定频率的电磁波,其在真空中的光速都一样。因此可见光属于电磁波。更多的光污染知识介绍,更多光污染的种类有哪些请大家继续关注的相关知识。

展开阅读全文

篇12:led可见光通信 led可见光通信技术 led可见光通信传输距离

全文共 3935 字

+ 加入清单

led可见光通信简介

可见光通信技术是一种在白光LED发明及应用后发展起来的新兴的无线光通信技术。LED不仅可以提供室内照明,而且可以应用到无线光通信系统中满足室内个人网络需求。

可见光通信的工作原理

可见光通信技术是指利用半导体(LED)器件高速点灭的发光响应特性,将LED发出的用肉眼察觉不到的高速速率调制的光载波信号来对信息进行调制和传输,然后利 用光电二极管等光电转换器件接收光载波信号,并获得信息使可见光通信与LED照明 相结合构建出LED照明和通信两用基站灯,它是一种在白光LED技术上发展起来的 新兴的无线光通信技术f61。白光LED具有功耗低、使用寿命长、尺寸小、绿色环保等 优点,特别是其响应灵敏度非常高,园此可以用来进行超高速数据通信。

可见光数据通信发射端是根据传递资料将电信号变调,再利用LED转换成光信号 发送出去,接收端利用受光元件接收光信号,再将光信号转换成电信号,经过解调当 成信号资料读取。在波长方面因为是采用可见光,所以波长从蓝光的380nm一直到红 光的780nm范围”J。

传统的光通信是利用不可见光来进行通信传输,大多是采用波长较长的红外光, 在这一部份,已经相当成熟.而相匹配的标准也广被业界所采用。可见光数据通信会 限制收信区域,LED点光源可见光无线通信器完全排除传统高频无线电磁波对人体与 周边电子机器干扰的疑虑,非常适合应用在道路诱导、展示导游、智能型道路交通系 统OTS)、医院、室内信息传输等限定空间的资料传输等领域。

可见光通信的发展

可见光通信的起源最早可追溯到19世纪70年代,当时Alexander Graham Bell提出采用可见光为媒介进行通信,但是当时既不能产生一个有用的光载波,也不能将光 从一个地方传到另外一个地方。到1960年激光器的发明,光通信才有了突破性的发展, 但研究领域基本上集中在光纤通信和不可见光无线通信领域。直到近几年,被誉为“绿 色照明”的半导体(LED)照明技术发展迅猛,利用半导体(LED)器件高速点灭的发光响应 特性,将信号调制到LED可见光上进行传输,使可见光通信与LED照明相结合构建 出LED照明和通信两用基站灯,可为光通信提供一种全新的宽带接入方式。随着白光 LED的迅速发展。可见光通信也逐渐发展起束榉i。

LED可见光通信可以分成室外通信和室内通信两大类。室外LED可见光通信技术 目前主要应用在智能交通系统(ITS:Intelligent TransportaTIon Systems) ,香港大学G.Pang等人在1998年提出了利用LED交通指示灯为车辆传输语音广播信号,将语音 信号通过OOK调制加至LED光源,实现了低速的无线LED可见光传输。中川研究 室的科研人员在2003年提出了LED公路照明通信系统IluJ。G.Pang等人只对利用LED 交通灯进行语音传输展开研究,中川研究室的科研人员则在LED公路照明通信系统中 分析了在不同的接收方向角和视场角下信噪比的好坏,以及在一定误码率下信嗓比和 接收数据率的关系,认为LED可见光公路照明通信系统优于红外公路交通通信系统。

随着智能交通系统研究的深入,又出现了LED交通灯、汽车前后LED灯之间构成的 交通灯至汽车和汽车前灯至汽车尾灯这两类可见光通信系统。

室内LED可见光无线通信技术主要应用在室内无线宽带接入网中,2000年,中川 研究室的研究人员TanakaYuichi等就基于室内白光LED通信光源的可见光通信系统的 信道进行了初步的数学分析和模拟计算,分析了白光LED照明灯用作室内照明用途的 同时作为通信光源的可能性。其后的研究也都是类似的理论分析报道。但是已有的研 究多针对LED照明光源布局设计,基于白光LED照明光源的可见光通信系统的整体 设计分析还不完善。

2003年lO月成立的可见光通信联合体(VLCC:Visible Light CommunicaTIonsConsorTIum),成立初期以加盟企业为主要对象,VLCC针对可见光通信技术的标准化 与应用普及化进行各种工作小组活动,至2007年1月为提升可见光通信知名度,包含 东芝等公司在内有23家会员公司正式展开工作小组活动,具体内容分别是携带终端、 光卷标(Tag)的检讨,并成立可见光ID标准化工作小组。可见光通信是照明器具与看板 等周边设备常用的通信技术,为了使可见光通信普及化,必需建立各种终端机器都能 够应用的标准化规范,目前VLCC已经制定两种规范,分别是可见光通信系统规范VLCC.STD.001及低速通信可见光ID用规范VLCC.STD.003。

适用范围是对以可见光 当作媒体的通信系统,尤其是系统分成物理层与应用上位层时,规定物理层部份适用 范围,包括接收端的发光元件、接收端的受光元件与发光元件的自由空间界面f”。 2004年10月在日本干叶召开的影像、信息及通信的综合展会(CEATEC)l-,由国际可见光通信协会的多家成员所进行的一系列展示活动,向世人证实了采用基于LED 的照明来向手持式和车载计算装置传送高速数据所拥有的诸多好处。将数据添加到随 处可见的照明设备(包括带照明的标志、交通信号灯及室内照明设备)所产生的可见 光,然后通过扩充RF技术而为人们营造一个更加广阔的无线通信世界。

室内LED可见光通信的关键技术

VLC作为一种无线的光通信方式,其系统包括下行链路和上行链路两部分。下行 链路包括发射和接收两部分。其发射部分主要包括将信号源信号转换成便于光信道传 输的电信号的输入和处理电路、将电信号变化调制成光载波强度变化的LED可见光驱 动调制电路。白光LED光源发出的已调制光以很大的发射角在空间中朝各个方向传播。

由于室内不受强背景光和天气的影响,光传播基本上不存在损耗,但是由于LED光源 个数较多,且具有较大的表面积,因而在发射机和接收机之间存在若干条不同的光路 径,不同的光路径到达接收机的时间不同,将引起所谓的码间干扰(ISI)。由于白光

LED光源发出的是可见光,且发散角较大。对人眼睛基本无害、无电磁波伤害等优点, 因而发射端可以具有较大的发射功率,使得系统的可靠性大大提高。

该系统的接收部分主要包括能对信号光源实现最佳接收的光学系统、将光信号还 原成电信号的光电探测器和前置放大电路、将电信号转换成可被终端识别的信号处理 和输出电路。室内的光信号被光电检测器转换为电信号,然后对电信号进行放大和处 理,恢复成与发端一样的信号。该系统的上行链路与下行链路的组成除了使用的光源 不同外,其它基本一样。上行链路采用的光源仍然由白光LED组成,只不过发射面积 较小,且具有较小的发射角,天花板上安装的光电检测器接收来自用户的光信号。若 将上述基本结构在通信双方对称配置,就可以得到一个可以双向同时工作的全双工 VLC系统,由该系统组成的网络称为可见光网络。

在VLC系统中,白光LED具有通信与照明的双重作用,这是因为白光LED的亮度很高,且调制速率非常高,人的眼睛完全感觉不到光的闪烁。VLC系统大多设计成 光强度调制/直接检测系统,采用曼彻斯特编码和00K调制方式。在 IM/DD系统中,由于存在多个光源,每个接收机都会接收到来自不同方向的光信号, 因而不会因为某条光路径被遮挡而导致通信中断,保证了通信的可靠性。

当前,LED可见光通信主要包括以下几个方面的关键技术:

1)可见光信道研究

可见光通信系统具有与红外无线通信不同的信道冲激响应,两者具有不同的特性, 这两种系统中引起ISI的原因也不相同,需要对多光源、时变信道环境下的VLC系统 的信道冲激响应和不同光路径引起的ISI作深入研究,从而解决ISI的影响。

2)码间干扰克服技术

由于LED单元灯分布位置不同及大气信道中存在的粒子散射导致不同的传输延迟,光脉冲会在时间上延伸,每个符号的脉冲将加宽延伸到相邻符号的时间间隔内, 产生码间干扰(ISI),导致系统性能恶化Ⅲ1。

3)光源的选择与布局

在可见光通信系统中,光源起着至关重要的作用。作为室内照明设备,它必须具有亮度高、散热小、功耗低、辐射范围广等特点。另一方面,作为光通信系统的光源, 它必须具有使用寿命长、调制性能好、响应灵敏度高、发射功率大等优点。综合以上 两个方面,目前能满足要求的最好选择就是白光LED。实际系统中,由于各个房间的 大小以及室内设施不尽相同,因而要使通信效果达到最优,须使房间内的光强分布大 致不变,尽量避免通信盲区(光照射不到的区域)的出现。要达到这个目的,必须根据不 同的房闻,合理的安排LED灯的布局。

4)最佳LED照明灯个数

在VLC系统中,通常安装在室内的LED灯具有一个较大的辐射角,以尽可能地 覆盖整个房间。但是由于行人、设备等的遮挡,会在接收机表面形成“阴影”,影响通 信性能。因此就需要将这种“阴影”的影响降至最低。对于照明来讲,室内安装的照明 灯越多,室内的亮度就越高,照明效果越好,同时接收功率也会大大增加。但是单纯 地增加LED灯的个数,虽然能够解决“阴影”问题,却并不能使系统的通信性能达到最 佳。这是因为,不同的光源与接收机之渊具有不同的光路径,多个不同的光路径会引起多径延迟产生码间干扰。因而可知,LED灯的个数越多,ISI越严重,必须合理地选 择LED灯的个数。

5)调制、编码以及解调技术

目前可见光通信系统大多采用强度调制(IM)的直接检测(DD)非相干系统,编码方式大多为二进制OOK(开关键控)编码。但由于OFDM可以有效地对抗多径传播所造成 的符号间干扰,其实现复杂度比采用均衡器的单载波系统小很多。因此采用OFDM调 制技术具有良好的发展触景。

展开阅读全文

篇13:玻璃可见光透比怎么计算

全文共 680 字

+ 加入清单

生活中我们离不开玻璃,玻璃是一种透明或半透明的材料,玻璃可见光投射比说的就是指透过玻璃的可见光光通量与投射在其表面可见光光通量之比,实际应用中一般都说玻璃透光率。

当光线入射玻璃时,表现有反射、吸收和透射三种性质。光线透过玻璃的性质,称为“透射”,以透光率表示。光线被玻璃阻挡,按一定角度反射出来,称为“反射”,以反射率表示。光线通过玻璃后,一部分光能量被损失,称为“吸收”,以吸收率表示。

要获得较高的透光率就必须减少光在玻璃表面的反射、玻璃中的吸收和散射损失。

反射率随入射角的增加而增大,但入射角小于40度时反射率随入射角的变化不明显,而当入射角大于70。时反射率随入射角的增加而急剧增加。反射率还随两介质的折射率的差值增加而增加。

一般颜色越深时,其透明系数越小。为减少玻璃的光吸收损失可以选择颜色较浅的玻璃使用,此外玻璃的透射损失随玻璃的厚度呈指数下降,可见厚度越小透光损失越小。

玻璃的散射损失主要发生在复合玻璃中,由于玻璃内部存在一些能使光改变方向的微粒,部分光不能进行成像而失去作用。光的散射损失取决于散射点的大小,当散射点的大小与入射光波的波长为同一数量级时光的散射最大,当微粒的直径大约是入射光波长的1/2时散射达到最大。

玻屏表面光洁度不同对透光率的影响不小,同一块玻屏术同部位由手表面情况有差异测得透光率有时可相差1%以上,不同玻屏更可能有差异。光洁度应该主要是对反射率造成影响。玻璃原料中自带的杂质也会影响透过率,比如三氧化二铁,这应该是因为吸收率受到了影响。

由此可见,玻璃可见光透比就是照射光线与穿透光线的比值。更多有意思的知识请大家继续关注。

展开阅读全文

篇14:可见光波长范围是多少

全文共 470 字

+ 加入清单

电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外光、X-射线和伽马射线等等。

我们都知道,可见光就是泛指人眼能感知的光。不论什么光,其实都是一种具有特定波长的电磁波。一般来说,可见光波长在400~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。

人眼对于不同波长的电磁波的敏感程度是不一样的,比如正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。也就是说,波长不同的电磁波,引起人眼的颜色感觉不同:波长770~622nm在人眼中感应的是红色;波长622~597nm在人眼中感应的是橙色;波长597~577nm在人眼中感应的是黄色;波长577~492nm在人眼中感应的是绿色;波长492~455nm在人眼中感应的是蓝、靛色;波长455~350nm在人眼中感应的是紫色。

更多有意思的知识请大家继续关注。

展开阅读全文

篇15:可见光的特定频率范围

全文共 479 字

+ 加入清单

光就是是人类生存必不可少的物质,提供者热量和各种便利。根据人的感知来分类,光可以简单分为可见光和不可见光

可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。

正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。人眼可以看见的光的范围受大气层影响。大气层对于大部分的电磁辐射来讲都是不透明的,只有可见光波段和其他少数如无线电通讯波段等例外。不少其他生物能看见的光波范围跟人类不一样,例如包括蜜蜂在内的一些昆虫能看见紫外线波段,对于寻找花蜜有很大帮助。最近的一项研究发现,可见光也有可能“透视”肉身。

可见光辐射一般指太阳辐射光谱中0.38~0.76微米波谱段的辐射,由紫、蓝、青、绿、黄、橙、红等七色光组成。是绿色植物进行光合作用所必须的和有效的太阳辐射能。到达地表面上的可见光辐射随大气浑浊度、太阳高度、云量和天气状况而变化。可见光辐射约占总辐射的45~50%。

更多有意思的知识请大家继续关注。

展开阅读全文

篇16:玻璃可见光投射比

全文共 642 字

+ 加入清单

玻璃是一种透明或半透明的材料,玻璃可见光投射比说的就是指透过玻璃的可见光光通量与投射在其表面可见光光通量之比,实际应用中一般都说玻璃透光率。

当光线入射玻璃时,表现有反射、吸收和透射三种性质。光线透过玻璃的性质,称为“透射”,以透光率表示。光线被玻璃阻挡,按一定角度反射出来,称为“反射”,以反射率表示。光线通过玻璃后,一部分光能量被损失,称为“吸收”,以吸收率表示。

要获得较高的透光率就必须减少光在玻璃表面的反射、玻璃中的吸收和散射损失。

反射率随入射角的增加而增大,但入射角小于40度时反射率随入射角的变化不明显,而当入射角大于70。时反射率随入射角的增加而急剧增加。反射率还随两介质的折射率的差值增加而增加。

一般颜色越深时,其透明系数越小。为减少玻璃的光吸收损失可以选择颜色较浅的玻璃使用,此外玻璃的透射损失随玻璃的厚度呈指数下降,可见厚度越小透光损失越小。

玻璃的散射损失主要发生在复合玻璃中,由于玻璃内部存在一些能使光改变方向的微粒,部分光不能进行成像而失去作用。光的散射损失取决于散射点的大小,当散射点的大小与入射光波的波长为同一数量级时光的散射最大,当微粒的直径大约是入射光波长的1/2时散射达到最大。

玻屏表面光洁度不同对透光率的影响不小,同一块玻屏术同部位由手表面情况有差异测得透光率有时可相差1%以上,不同玻屏更可能有差异。光洁度应该主要是对反射率造成影响。玻璃原料中自带的杂质也会影响透过率,比如三氧化二铁,这应该是因为吸收率受到了影响。

更多有意思的知识请大家继续关注。

展开阅读全文

篇17:不可见光的种类

全文共 650 字

+ 加入清单

对于人类来说,光是一种能量,世界上万事万物的生存都离不了光。根据人的感知来分类,光可以简单分为可见光和不可见光,可见光是电磁波谱中人眼可以感知的部分,比如阳光,灯光等等;不可见光顾名思义就是人类肉眼看不到的光,其中包括我们熟悉的紫外线、红外线、远红外线等。

紫外线是一种电磁波,波长小于可见光,大部分地球表面的紫外线来自太阳,紫外线是伤害性光线的一种,经由皮肤的吸收,会伤害DNA(组成染色体基因讯息传递的化学运送单位),当DNA遭受破坏、细胞会因而死亡或是发展成不能控制的癌细胞,这就是瘤形成的初期。紫外线已被确定与许多疾病的产生有关;例如:皱纹、晒伤、白内障、皮肤癌、视觉损害与免疫系统的伤害。当紫外线照射人体或生物体后,发生生理变化。不同波长的紫外线的生理作用不同。根据紫外线对生物作用,在医疗上把紫外线划分为不同的波段:黑斑紫外线(曲线A)在320—400纳米波段;红斑紫外线或保健射线(曲线B)在280~320纳米波段;灭菌紫外线(曲线C)在200~320纳米波段;致臭氧紫外线(曲线D)在180~200纳米波段。

红外线俗称红外光,是波长介乎微波与可见光之间的电磁波,波长在750纳米至1毫米之间,是波长比红光长的非可见光。覆盖室温下物体所发出的热辐射的波段。透过云雾能力比可见光强。在通讯、探测、医疗、军事等方面有广泛的用途。红外线的波长范围很宽,人们将不同波长范围的红外线分为近红外、中红外和远红外区域,相对应波长的电磁波称为近红外线、中红外线及远红外线。

更多有意思的知识请大家继续关注。

展开阅读全文

篇18:可见光通信技术介绍 可见光通信技术原理 可见光通信技术前景

全文共 2821 字

+ 加入清单

可见光通信技术介绍

可见光通信技术,是利用荧光灯或发光二极管等发出的肉眼看不到的高速明暗闪烁信号来传输信息的,将高速因特网的电线装置连接在照明装置上,插入电源插头即可使用。利用这种技术做成的系统能够覆盖室内灯光达到的范围,电脑不需要电线连接,因而具有广泛的开发前景

可见光通信技术的特点

与目前使用的无线局域网(无线LAN)相比,“可见光通信”系统可利用室内照明设备代替无线LAN局域网基站发射信号,其通信速度可达每秒数十兆至数百兆,未来传输速度还可能超过光纤通信。利用专用的、能够接发信号功能的电脑以及移动信息终端,只要在室内灯光照到的地方,就可以长时间下载和上传高清晰画像和动画等数据。该系统还具有安全性高的特点。用窗帘遮住光线,信息就不会外泄至室外,同时使用多台电脑也不会影响通信速度。由于不使用无线电波通信,对电磁信号敏感的医院等部门可以自由使用该系统。

无需WiFi信号,点一盏LED灯就能上网。一种利用屋内可见光传输网络信号的国际前沿通讯技术在实验室成功实现。研究人员将网络信号接入一盏1W的LED灯珠,灯光下的4台电脑即可上网,最高速率可达3.25G,平均上网速率达到150M,堪称世界最快的“灯光上网”。可见光通讯被称为Lifi 。

无线电信号传输设备存在很多局限性,它们稀有、昂贵、但效率不高,比如手机,全球数百万个基站帮助其增强信号,但大部分能量却消耗在冷却上,效率只有5%。相比之下,全世界使用的灯泡却取之不尽,尤其在国内LED光源正在大规模取代传统白炽灯。只要在任何不起眼的LED灯泡中增加一个微芯片,便可让灯泡变成无线网络发射器。

可见光通讯安全又经济。科研人员不仅在实验室环境中利用可见光传输网络信号,并且实现能够“一拖四”,即点亮一盏小灯,4台电脑即可同时上网、互传网络信号。光和无线电波一样,都属于电磁波的一种,传播网络信号的基本原理是一致的。

给普通的LED灯泡装上微芯片,可以控制它每秒数百万次闪烁,亮了表示1,灭了代表0。由于频率太快,人眼根本觉察不到,光敏传感器却可以接收到这些变化。二进制的数据就被快速编码成灯光信号并进行了有效的传输。灯光下的电脑,通过一套特制的接收装置传输信号。有灯光的地方,就有网络信号。关掉灯,网络全无。与现有WiFi相比,未来的可见光通讯安全又经济。WiFi依赖看不见的无线电波传输,设备功率越来越大,局部电磁辐射势必增强;无线信号穿墙而过,网络信息不安全。这些安全隐患,在可见光通讯中“一扫而光”。而且,光谱比无线电频谱大10000倍,意味着更大的带宽和更高的速度,网络设置又几乎不需要任何新的基础设施。

可见光通信技术原理

利用光的明暗来编码信息。光源采用一种新时代的高亮度发光二极管(LED),LED亮了,就表示1,灭了就表示0。科学家哈斯声称通过在任何不起眼的LED灯泡中增加一个微芯片,可以控制它每秒数百万次闪烁,由于频率太快,人眼根本不会察觉到,但是光敏传感器可以接收到这些变化。就这样,二进制的数据就被快速地编码成灯光信号并进行了有效的传输。

可见光通信技术前景分析

目前室内无线通信能满足要求的最好选择就是白光LED。白光 LED在提供室内照明的同时,被用作通信光源有望实现室内无线高速数据接入。目前,商品化的大功率白光LED功率已经达到5W,发光效率也已经达到90lm/W,其发光效率(流明效率)已经超过白炽灯,接近荧光灯。白光LED的光效超过100lm/W并达到200lm/W(可以完全取代现有的照明设备)在不久的将来即可实现。因而LED照明光通信技术具有极大的发展前景,已引起人们的广泛关注和研究

1、智能交通系统的信息传输

智能交通系统经由及时接收并发送有关交通运行状况等相关信息,可达到减少交通拥堵、燃油消耗及交通事故等目的。图像处理有助于行车人员开展交通信号灯识别、障碍物检测等信息接收,属于智能交通系统中的一项关键技术。可见光通信技术结合高速数据图像传感器在智能交通系统中有着十分可观的应用前景。相关研究人员应用LED光及装置于汽车上的高帧速、高分辨力摄像机开展路边装置与车辆相互间的通信,研究结果得出,这一系统可于车辆在30km/h行车速度,及在35m范围内发出源自256个LEDs阵列组成光源发送来的数据的有效接受。

2、可见光通信高速数据传输

大数据量,诸如高速信息流下载、高清视频流传输等信息获取,已然转变成当今社会中必不可少的一部分。可见光通信技术可借助发散角度极小的关注开展数据传输,而可见光通信技术凭借其路径传输损耗相对低的特征,使得高度带宽的安全数据流接收、发送变得可实现。举例而言,欧洲OMEGA工程推出了一种有着100Mb/s的4个高清数据流的可见光通信数据传输。采取正交频分多路复用技术,经由若干个LED光源朝一定范围内光电二极管探测装置上开展数据传输。

3、可见光通信技术在航空领域的应用

可见光通信技术在航空领域的应用有着十分显著的优势。可见光LED在新一代商用飞机上得到广泛推广,依托可见光通信对原本电缆、光缆予以取代,可促进缩减重量和體积、减少成本及减轻电磁干扰等,波音商用飞机平台便在推进未来无限光网络方案的研究。

延伸阅读:我国可见光通信研究

经工业和信息化部测试认证,我国“可见光通信系统关键技术研究”近日获得重大突破,实时通信速率提高至50Gbps(比特每秒),相当于0.2秒即可完成一部高清电影的下载。

可见光通信是利用半导体照明(LED灯)的光线实现“有光照就能上网”的新型高速数据传输技术。可见光通信技术绿色低碳、可实现近乎零耗能通信,还可有效避免无线电通信电磁信号泄露等弱点,快速构建抗干扰、抗截获的安全信息空间。

我国信息领域著名专家、中国工程院院士邬江兴介绍说,目前,全球大约拥有440亿盏灯具构成的照明网络,数百亿的LED照明设备与其它设备融合将构筑一个巨大的可见光通信网。可以设想,未来实现大规模可见光通信后,每盏灯都可以当做一个高速网络热点,人们等车的时候在路灯下就可下载几部电影,在飞机、高铁上也可借助LED光源无线高速上网,满足室内网、物联网、车联网、工业4.0、安全支付、智慧城市、国防通信、武器装备、电磁敏感区域等网络末端无线通信需求,为互联网+提供一种崭新的廉价接入方法。

邬江兴预测,在未来数十年内,信息的传输量将超出现有无线电频谱的承载能力,可见光通信技术可有效突破无线电频谱资源严重匮乏的困局,是具有广阔应用前景的下一代无线通信技术之一,可形成万亿级年产值的战略性新兴产业。

高速传输一直是可见光通信领域研究的焦点课题之一,解放军信息工程大学于宏毅研发团队采用光学和电学相协同的处理方法,突破了可见光空间通道互干扰高效抑制等关键技术,进入集成化、微型化设计与实现阶段。这所大学是国内较早从事可见光通信技术研发的科研单位,2013年牵头承担了我国首个可见光863计划项目,并组建了“中国可见光通信产业技术联盟”。经过3年多的科技攻关,先后研发成功“可见光点播电视业务”“可见光新型无线广播”“可见光精确定位”等应用示范系统。

展开阅读全文

篇19:灯光是可见光吗

全文共 407 字

+ 加入清单

光能是人类生存最重要的能源之一,万事万物的生长都离不了光,因此对于光的研究很早就开始了。根据人眼的感知,科学界把光分为可见光和不可见光两种。

可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400~760nm之间。正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。人眼可以看见的光的范围受大气层影响。大气层对于大部分的电磁辐射来讲都是不透明的,只有可见光波段和其他少数如无线电通讯波段等例外。不少其他生物能看见的光波范围跟人类不一样,例如包括蜜蜂在内的一些昆虫能看见紫外线波段,对于寻找花蜜有很大帮助。最近的一项研究发现,可见光也有可能“透视”肉身。不可见光就是人类肉眼看不到的光,其中包括我们熟悉的紫外线、红外线、远红外线等。根据定义我们很容易做出判断,灯光由于能够被人眼感知,所以灯光是可见光。

更多有意思的知识请大家继续关注。

展开阅读全文

篇20:可见光对皮肤有伤害吗

全文共 473 字

+ 加入清单

随着社会的高速发展,大量照明设备被广泛应用。特别是城市里,一到夜晚就灯火通明,商场、酒店上的广告灯、霓虹灯闪烁夺目,令人眼花缭乱。有些强光束甚至直冲云霄,这些可见光使得夜晚如同白天一样,这就是人工白昼,是现代光污染的种类之一。

不合理的可见光的危害是很多的,人体在光污染中最先受害的是直接接触光源的眼睛,光污染会导致视疲劳和视力下降。人工白昼光源让人眼花缭乱,不仅对眼睛不利,而且干扰大脑中枢神经,使人感到头晕目眩,出现恶心呕吐、失眠等症状。而且人工白昼污染不仅有损人的生理功能,还会影响心理健康。就犹如人彻夜亮灯睡觉一样,会扰乱机体自身的自然平衡,使人体产生一种“光压力”。若长期处于这种压力下,体内的生物和化学系统会发生改变,体温、心跳、脉搏、血压会变得不协调,各种疾病乘虚而入。经常处于光照环境中的新生儿,往往会出现睡眠和营养方面的问题,甚至会刺激儿童性早熟。这是因为接受光照太多,会减少松果体褪黑激素的分泌,减弱对性腺发育的抑制,导致性器官的超前发育,使性早熟不可避免。

更多的光污染知识介绍,更多光污染的种类有哪些请大家继续关注的相关知识。

展开阅读全文